101 research outputs found

    A tale of two gyres: Contrasting distributions of dissolved cobalt and iron in the Atlantic Ocean during an Atlantic Meridional Transect (AMT-19).

    Get PDF
    Cobalt (Co) and iron (Fe) are essential for phytoplankton nutrition, and as such constitute a vital link in the marine biological carbon pump. Atmospheric deposition is an important, and in some places the dominant, source of trace elements (TEs) to the global ocean. Dissolved cobalt (dCo) and iron (dFe) were determined along an Atlantic Meridional Transect (AMT-19; Oct/Nov 2009) between 50°N and 40°S in the upper 150 m in order to investigate the behaviour and distribution of these two essential, bioactive TEs. During AMT-19, large differences in the distributions of dCo and dFe were observed. In the North Atlantic gyre provinces, extremely low mixed layer dCo concentrations (23 ± 9 pM) were observed, which contrasts with the relatively high mixed layer dFe concentrations (up to 1.0 nM) coincident with the band of highest atmospheric deposition (∼5–30°N). In the South Atlantic gyre, the opposite trend was observed, with relatively high dCo (55 ± 18 pM) observed throughout the water column, but low dFe concentrations (0.29 ± 0.08 nM). Given that annual dust supply is an order of magnitude greater in the North than the South Atlantic, the dCo distribution was somewhat unexpected. However, the distribution of dCo shows similarities with the distribution of phosphate (PO43−) in the euphotic zone of the Atlantic Ocean, where the North Atlantic gyre is characterised by chronically low PO4, and higher concentrations are observed in the South Atlantic gyre (Mather et al., 2008), suggesting the potential for a similar biological control of dCo distributions. Inverse correlations between dCo and Prochlorococcus abundance in the North Atlantic gyre provinces, combined with extremely low dCo where nitrogen fixation rates were highest (∼20–28°N), suggests the dominance of biological controls on dCo distributions. The contrasting dCo and dFe distributions in the North and South Atlantic gyres provides insights into the differences between the dominant controls on the distribution of these two bioactive trace metals in the central Atlantic Ocean

    Combined uncertainty estimation for the determination of the dissolved iron amount content in seawater using flow injection with chemiluminescence detection

    Get PDF
    This work assesses the components contributing to the combined uncertainty budget associated with the measurement of the Fe amount content by flow injection chemiluminescence (FI-CL) in <0.2 μm filtered and acidified seawater samples. Amounts of loaded standard solutions and samples were determined gravimetrically by differential weighing. Up to 5% variations in the loaded masses were observed during measurements, in contradiction to the usual assumptions made when operating under constant loading time conditions. Hence signal intensities (V) were normalised to the loaded mass and plots of average normalized intensities (in V kg-1) versus values of the Fe amount content (in nmol kg-1) added to a ‘low level’ iron seawater matrix were used to produce the calibration graphs. The measurement procedure implemented and the uncertainty estimation process developed were validated from the agreement obtained with consensus values for three SAFe and GEOTRACES reference materials (D2, GS and GD). Relative expanded uncertainties for peak height and peak area based results were estimated to be around 12% and 10% (k=2) respectively. The most important contributory factors were the uncertainty on the sensitivity coefficient (i.e. calibration slope) and within-sequence-stability (i.e. the signal stability measured over several hours of operation; in this case 32 h). Therefore, an uncertainty estimation based on the intensity repeatability alone, as is often done in FI-CL studies, is not a realistic estimation of the overall uncertainty of the procedure.JRC.D.2-Standards for Innovation and sustainable Developmen

    The distribution of lead concentrations and isotope compositions in the eastern Tropical Atlantic Ocean

    Get PDF
    Anthropogenic emissions have dominated marine Pb sources during the past century. Here we present Pb concentrations and isotope compositions for ocean depth profiles collected in the eastern Tropical Atlantic Ocean (GEOTRACES section GA06), to trace the transfer of anthropogenic Pb into the ocean interior. Variations in Pb concentration and isotope composition were associated with changes in hydrography. Water masses ventilated in the southern hemisphere generally featured lower 206Pb/207Pb and 208Pb/207Pb ratios than those ventilated in the northern hemisphere, in accordance with Pb isotope data of historic anthropogenic Pb emissions. The distributions of Pb concentrations and isotope compositions in northern sourced waters were consistent with differences in their ventilation timescales. For example, a Pb concentration maximum at intermediate depth (600–900 m, 35 pmol kg−1) in waters sourced from the Irminger/Labrador Seas, is associated with Pb isotope compositions (206Pb/207Pb = 1.1818–1.1824, 208Pb/207Pb = 2.4472–2.4483) indicative of northern hemispheric emissions during the 1950s and 1960s close to peak leaded petrol usage, and a transit time of ∼50–60 years. In contrast, North Atlantic Deep Water (2000–4000 m water depth) featured lower Pb concentrations and isotope compositions (206Pb/207Pb = 1.1762–1.184, 208Pb/207Pb = 2.4482–2.4545) indicative of northern hemispheric emissions during the 1910s and 1930s and a transit time of ∼80–100 years. This supports the notion that transient anthropogenic Pb inputs are predominantly transferred into the ocean interior by water mass transport. However, the interpretation of Pb concentration and isotope composition distributions in terms of ventilation timescales and pathways is complicated by (1) the chemical reactivity of Pb in the ocean, and (2) mixing of waters ventilated during different time periods. The complex effects of water mass mixing on Pb distributions is particularly apparent in seawater in the Tropical Atlantic Ocean which is ventilated from the southern hemisphere. In particular, South Atlantic Central Water and Antarctic Intermediate Water were dominated by anthropogenic Pb emitted during the last 50–100 years, despite estimates of much older average ventilation ages in this region

    Uncertainty associated with the leaching of aerosol filters for the determination of metals in aerosol particulate matter using collision/reaction cell ICP-MS detection

    Get PDF
    © 2019 Elsevier B.V. High quality observational data with a firm uncertainty assessment are essential for the proper validation of biogeochemical models for trace metals such as iron. Typically, concentrations of these metals are very low in oceanic waters (nM and sub nM) and ICP-MS is therefore a favoured technique for quantitative analysis. Uncertainties in the measurement step are generally well constrained, even at sub-nM concentrations. However, the measurement step is only part of the overall procedure. For the determination of trace metal solubilities from aerosols in the surface ocean, aerosol collection on a filter paper followed by a leaching procedure is likely to make a significant contribution to the overall uncertainty. This paper quantifies the uncertainties for key trace metals (cobalt, iron, lead and vanadium), together with aluminium as a reference element, for a controlled, flow through laboratory leaching procedure using filters collected from three different sampling sites (Tudor Hill (Bermuda), Heraklion (Crete) and Tel-Shikmona (Israel)) and water, glucuronic acid and desferrioxamine B as leachants. Relative expanded uncertainties were in the range of 12–29% for cobalt, 12–62% for iron, 13–45% for lead and 5–11% for vanadium. Fractional solubilities for iron ranged from 0.2 ± 0.1% to 16.9 ± 3.5%

    The unaccounted dissolved iron (II) sink: Insights from dFe(II) concentrations in the deep Atlantic Ocean

    Get PDF
    Hydrothermal vent sites found along mid-ocean ridges are sources of numerous reduced chemical species and trace elements. To establish dissolved iron (II) (dFe(II)) variability along the Mid Atlantic Ridge (between 39.5°N and 26°N), dFe(II) concentrations were measured above six hydrothermal vent sites, as well as at stations with no active hydrothermal activity. The dFe(II) concentrations ranged from 0.00 to 0.12 nmol L−1 (detection limit = 0.02 ± 0.02 nmol L−1) in non-hydrothermally affected regions to values as high as 12.8 nmol L−1 within hydrothermal plumes. Iron (II) in seawater is oxidised over a period of minutes to hours, which is on average two times faster than the time required to collect the sample from the deep ocean and its analysis in the onboard laboratory. A multiparametric equation was used to estimate the original dFe(II) concentration in the deep ocean. The in-situ temperature, pH, salinity and delay between sample collection and its analysis were considered. The results showed that dFe(II) plays a more significant role in the iron pool than previously accounted for, constituting a fraction >20 % of the dissolved iron pool, in contrast to <10 % of the iron pool formerly reported. This discrepancy is caused by Fe(II) loss during sampling when between 35 and 90 % of the dFe(II) gets oxidised. In-situ dFe(II) concentrations are therefore significantly higher than values reported in sedimentary and hydrothermal settings where Fe is added to the ocean in its reduced form. Consequently, the high dynamism of dFe(II) in hydrothermal environments masks the magnitude of dFe(II) sourced within the deep ocean

    Iron Distribution in the Subtropical North Atlantic: The Pivotal Role of Colloidal Iron

    Get PDF
    The low availability of the essential micronutrient iron (Fe) in the ocean impacts the efficiency of the biological carbon pump, and hence, it is vital to elucidate its sources, sinks, and internal cycling. We present size‐fractionated dissolved Fe (dFe, <0.2 μm) measurements from 130 surface samples and 7 full‐depth profiles from the subtropical North Atlantic during summer 2017 and demonstrate the pivotal role of colloidal (cFe, 0.02 to 0.2 μm) over soluble (sFe, <0.02 μm) Fe in controlling the dFe distribution. In the surface (<5 m), a strong west‐to‐east decrease in dFe (1.53 to 0.26 nM) was driven by a dust gradient, which retained dFe predominantly as cFe (61% to 85% of dFe), while sFe remained largely constant at 0.19 ± 0.05 nM. In the euphotic zone, the attenuation of dFe resulted from the depletion of cFe (0% to 30% of dFe), with scavenging as an important driver. In the mesopelagic, cFe was released from sinking biogenic and lithogenic particles, creating a zone of elevated dFe (0.7 to 1.0 nM) between 400 to 1100 m depth. While the ocean interior, below the mesopelagic and above the seafloor boundary, exhibited a narrow range of cFe (40% to 60% of dFe), the abyssal cFe fraction varied in range from 26% to 76% due to interactions with seafloor sediments and a hydrothermal source with almost 100% cFe. Overall, our results produced an hourglass shape for the vertical cFe‐to‐dFe fraction and highlight the primary control of cFe on the dFe distribution

    Radium-228-derived ocean mixing and trace element inputs in the South Atlantic

    Get PDF
    Trace elements (TEs) play important roles as micronutrients in modulating marine productivity in the global ocean. The South Atlantic around 40◦S is a prominent region of high productivity and a transition zone between the nitrate-depleted subtropical gyre and the iron-limited Southern Ocean. However, the sources and fluxes of trace elements to this region remain unclear. In this study, the distribution of the naturally occurring radioisotope 228Ra in the water column of the South Atlantic (Cape Basin and Argentine Basin) has been investigated along a 40◦S zonal transect to estimate ocean mixing and trace element supply to the surface ocean. Ra-228 profiles have been used to determine the horizontal and vertical mixing rates in the near-surface open ocean. In the Argentine Basin, horizontal mixingfromthecontinentalshelftotheopenoceanshowsan eddy diffusion of Kx =1.8±1.4 (106 cm2 s−1) and an integrated advection velocity w=0.6±0.3cms−1. In the Cape Basin, horizontal mixing is Kx =2.7±0.8 (107 cm2 s−1) andverticalmixing Kz=1.0–1.7cm2 s−1 intheupper600m layer. Three different approaches (228Ra diffusion, 228Ra advection, and 228Ra/TE ratio) have been applied to estimate the dissolved trace element fluxes from the shelf to the open ocean. These approaches bracket the possible range of off-shelf fluxes from the Argentine Basin margin to be 4–21 (×103)nmolCom−2 d−1, 8–19 (×104)nmolFem−2 d−1 and 2.7–6.3 (×104)nmolZnm−2 d−1. Off-shelf fluxes from the Cape Basin margin are 4.3–6.2 (×103)nmolCom−2 d−1, 1.2–3.1 (×104)nmolFem−2 d−1, and 0.9–1.2 (×104)nmolZnm−2 d−1. On average, at 40◦S in the Atlantic, vertical mixing supplies 0.1– 1.2nmolCom−2 d−1, 6–9nmolFem−2 d−1, and 5– 7nmolZnm−2 d−1 to the euphotic zone. Compared with atmospheric dust and continental shelf inputs, vertical mixing is a more important source for supplying dissolved trace elements to the surface 40◦S Atlantic transect. It is insufficient, however, to provide the trace elements removed by biological uptake, particularly for Fe. Other inputs (e.g. particulate or from winter deep mixing) are required to balance the trace element budgets in this region

    Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section

    Get PDF
    Abstract. We report the distributions and stoichiometry of dissolved zinc (dZn) and cobalt (dCo) in sub-tropical and sub-Antarctic waters of the south-eastern Atlantic Ocean during austral spring 2010 and summer 2011/2012. In sub-tropical surface waters, mixed-layer dZn and dCo concentrations during early spring were 1.60 ± 2.58 nM and 30 ± 11 pM, respectively, compared with summer values of 0.14 ± 0.08 nM and 24 ± 6 pM. The elevated spring dZn concentrations resulted from an apparent offshore transport of elevated dZn at depths between 20–55 m, derived from the Agulhas Bank. In contrast, open-ocean sub-Antarctic surface waters displayed largely consistent inter-seasonal mixed-layer dZn and dCo concentrations of 0.10 ± 0.07 nM and 11 ± 5 pM, respectively. Trace metal stoichiometry, calculated from concentration inventories, suggests a greater overall removal for dZn relative to dCo in the upper water column of the south-eastern Atlantic, with inter-seasonally decreasing dZn / dCo inventory ratios of 19–5 and 13–7 mol mol−1 for sub-tropical surface water and sub-Antarctic surface water, respectively. In this paper, we investigate how the seasonal influences of external input and phytoplankton succession may relate to the distribution of dZn and dCo and variation in dZn / dCo stoichiometry across these two distinct ecological regimes in the south-eastern Atlantic. </jats:p

    Impact of surface ocean conditions and aerosol provenance on the dissolution of aerosol manganese, cobalt, nickel and lead in seawater

    Get PDF
    © 2017. Atmospheric deposition is an important pathway by which bioactive trace metals are delivered to the surface ocean. The proportions of total aerosol trace metals that dissolve in seawater, and thus become available to biota, are not well constrained and are therefore a key uncertainty when estimating atmospheric fluxes of these elements to surface waters. The aim of this study was to elucidate the main physico-chemical controls on the dissolution of the bioactive trace metals manganese (Mn), cobalt (Co), nickel (Ni) and lead (Pb). To this end, aerosol and surface seawater samples were collected in the Sargasso Sea and subsequently used in sequential seawater leach dissolution experiments to assess the role of aerosol source, seawater temperature, pH, and concentrations of dissolved oxygen and organic ligands, on aerosol trace metal dissolution.Results reveal that changes in key physico-chemical parameters in seawater leaches had little effect on the proportions of Mn, Co, Ni and Pb released from aerosols, although organic ligand amendments impacted the size distribution of aerosol-derived Mn in solution. Conversely, aerosol source and composition had the most significant effect on the dissolution of aerosol Co and Pb, with the most 'anthropogenic' aerosol samples displaying the highest fractional solubilities in seawater (up to 58% for Co and 112% for Pb).Fractional solubilities over the range of samples and conditions tested were in the range of 50-104% for Mn, 29-58% for Co, 40-85% for Ni and 67-112% for Pb. A large proportion (36-100%, median 89%) of the total dMn, dCo, dNi and dPb was mobilised rapidly during the first leaching step (5. min), with less dTM being released in leaches 2 through 4. Furthermore, investigation of the size distribution of the aerosol-derived trace metals in seawater showed that dissolved Pb was mostly colloidal (0.02-0.4. μm), dissolved Mn and Co were mostly soluble ( < . 0.02. μm), and dissolved Ni displayed a mixed size distribution. Good empirical relationships were observed between enrichment factors for aerosol antimony (Sb) and the fractional solubilities of aerosol Fe, Co and Pb, suggesting total aerosol Sb can be useful in estimating and modelling the fractional solubility of these metals using total aerosol trace metal concentrations from historical data
    corecore