364 research outputs found
Robust Linear Models for Cis-eQTL Analysis
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of
functional genetic variation influencing expression levels of individual genes.
In outbread populations, including humans, eQTLs are commonly analysed using the
conventional linear model, adjusting for relevant covariates, assuming an allelic
dosage model and a Gaussian error term. However, gene expression data generally
have noise that induces heavy-tailed errors relative to the Gaussian distribution
and often include atypical observations, or outliers. Such departures from
modelling assumptions can lead to an increased rate of type II errors (false
negatives), and to some extent also type I errors (false positives). Careful
model checking can reduce the risk of type-I errors but often not type II errors,
since it is generally too time-consuming to carefully check all models with a
non-significant effect in large-scale and genome-wide studies. Here we propose
the application of a robust linear model for eQTL analysis to reduce adverse
effects of deviations from the assumption of Gaussian residuals. We present
results from a simulation study as well as results from the analysis of real eQTL
data sets. Our findings suggest that in many situations robust models have the
potential to provide more reliable eQTL results compared to conventional linear
models, particularly in respect to reducing type II errors due to non-Gaussian
noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are
often noisy and frequently contain atypical observations. Robust statistical
models have the potential to provide more reliable results and increased
statistical power under non-Gaussian conditions. The results presented here
suggest that robust models should be considered routinely alongside other
commonly used methodologies for eQTL analysis.NonePublishe
MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven
To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets
The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits
PMCID: PMC3410907This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Machine Learning based histology phenotyping to investigate the epidemiologic and genetic basis of adipocyte morphology and cardiometabolic traits
Genetic studies have recently highlighted the importance of fat distribution, as well as overall adiposity, in the pathogenesis of obesity-associated diseases. Using a large study (n = 1,288) from 4 independent cohorts, we aimed to investigate the relationship between mean adipocyte area and obesity-related traits, and identify genetic factors associated with adipocyte cell size. To perform the first large-scale study of automatic adipocyte phenotyping using both histological and genetic data, we developed a deep learning-based method, the Adipocyte U-Net, to rapidly derive mean adipocyte area estimates from histology images. We validate our method using three state-of-the-art approaches; CellProfiler, Adiposoft and floating adipocytes fractions, all run blindly on two external cohorts. We observe high concordance between our method and the state-of-the-art approaches (Adipocyte U-net vs. CellProfiler: R2visceral = 0.94, P < 2.2 × 10-16, R2subcutaneous = 0.91, P < 2.2 × 10-16), and faster run times (10,000 images: 6mins vs 3.5hrs). We applied the Adipocyte U-Net to 4 cohorts with histology, genetic, and phenotypic data (total N = 820). After meta-analysis, we found that mean adipocyte area positively correlated with body mass index (BMI) (Psubq = 8.13 × 10-69, βsubq = 0.45; Pvisc = 2.5 × 10-55, βvisc = 0.49; average R2 across cohorts = 0.49) and that adipocytes in subcutaneous depots are larger than their visceral counterparts (Pmeta = 9.8 × 10-7). Lastly, we performed the largest GWAS and subsequent meta-analysis of mean adipocyte area and intra-individual adipocyte variation (N = 820). Despite having twice the number of samples than any similar study, we found no genome-wide significant associations, suggesting that larger sample sizes and a homogenous collection of adipose tissue are likely needed to identify robust genetic associations.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.C.A.G received a pump priming grant from Novo Nordisk to carry out this work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.published version, accepted versio
Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.
BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.
METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.
RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P = 5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P = 2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.
CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function
The Genetics of Obesity
Obesity is a result of excess body fat accumulation. This excess is associated with adverse health effects such as CVD, type 2 diabetes, and cancer. The development of obesity has an evident environmental contribution, but as shown by heritability estimates of 40% to 70%, a genetic susceptibility component is also needed. Progress in understanding the etiology has been slow, with findings largely restricted to monogenic, severe forms of obesity. However, technological and analytical advances have enabled detection of more than 20 obesity susceptibility loci. These contain genes suggested to be involved in the regulation of food intake through action in the central nervous system as well as in adipocyte function. These results provide plausible biological pathways that may, in the future, be targeted as part of treatment or prevention strategies. Although the proportion of heritability explained by these genes is small, their detection heralds a new phase in understanding the etiology of common obesity
Extent, causes, and consequences of small RNA expression variation in human adipose tissue.
Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
- …