32 research outputs found
Recommended from our members
VEXOR: an integrative environment for prioritization of functional variants in fine-mapping analysis
Motivation: The identification of the functional variants responsible for observed genome-wide association studies (GWAS) signals is one of the most challenging tasks of the post-GWAS research era. Several tools have been developed to annotate genetic variants by their genomic location and potential functional implications. Each of these tools has its own requirements and internal logic, which forces the user to become acquainted with each interface.
Results: From an awareness of the amount of work needed to analyze a single locus, we have built a flexible, versatile and easy-to-use web interface designed to help in prioritizing variants and predicting their potential functional implications. This interface acts as a single-point of entry linking association results with reference tools and relevant experiments.The PERSPECTIVE project was supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research (grant GPH-129344), the Ministère de l’Économie, Science et Innovation du Québec through Genome Québec and the Quebec Breast Cancer Foundation
Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21
There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, -acting variants represent an important source of phenotypic variation. Consequently, -regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, = 5.6x10). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, , encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, encoding the Mitochondrial Ribosomal Protein S18C and , encoding a BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with ( = 8.28x10), ( = 1.94x10) and ( = 3.83x10), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.Information regarding funding can be found in the published article or the publisher's website. Funders include Cancer Research UK and the National Institute for Health Research
Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression:Identification of a modifier of breast cancer risk at locus 11q22.3
Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways.Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of similar to 320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2.We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 x 10(-6)). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance.We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.</p
Recommended from our members
A second update on mapping the human genetic architecture of COVID-19
Matters Arising From: COVID-19 Host Genetics Initiative. Nature https://doi.org/10.1038/s41586-021-03767-x (2021)Data availability:
Summary statistics generated by the COVID-19 HGI are available online, including per-ancestry summary statistics for African, admixed American, East Asian, European and South Asian ancestries (https://www.covid19hg.org/results/r7/). The analyses described here used the data release 7. If available, individual-level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale laboratory (http://www.nealelab.is/uk-biobank/), the Finucane laboratory (https://www.finucanelab.org), the FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results) and the eQTL catalogue release 3 (http://www.ebi.ac.uk/eqtl/).Code availability:
The code for summary statistics lift-over, the projection PCA pipeline including precomputed loadings and meta-analyses (https://github.com/covid19-hg/); for heritability estimation (https://github.com/AndrewsLabUCSF/COVID19_heritability); for Mendelian randomization and genetic correlation (https://github.com/marcoralab/MRcovid); and subtype analyses (https://github.com/mjpirinen/covid19-hgi_subtypes) are available at GitHub.Reporting summary:
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article online at: https://www.nature.com/articles/s41586-023-06355-3#MOESM2 .Supplementary information is available online at: https://www.nature.com/articles/s41586-023-06355-3#Sec4 .Copyright © The Author(s) 2023. Investigating the role of host genetic factors in COVID-19 severity and susceptibility can inform our understanding of the underlying biological mechanisms that influence adverse outcomes and drug development1,2. Here we present a second updated genome-wide association study (GWAS) on COVID-19 severity and infection susceptibility to SARS-CoV-2 from the COVID-19 Host Genetic Initiative (data release 7). We performed a meta-analysis of up to 219,692 cases and over 3 million controls, identifying 51 distinct genome-wide significant loci—adding 28 loci from the previous data release2. The increased number of candidate genes at the identified loci helped to map three major biological pathways that are involved in susceptibility and severity: viral entry, airway defence in mucus and type I interferon
Mapping the human genetic architecture of COVID-19
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19(1,2), host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases(3-7). They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.Radiolog
Association analysis identifies 65 new breast cancer risk loci
Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. Genotyping of the OncoArray was principally funded from three sources: the PERSPECTIVE project, funded by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the ‘Ministère de l’Économie, de la Science et de l’Innovation du Québec’ through Genome Québec, and the Quebec Breast Cancer Foundation; the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative and Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE) project (NIH Grants U19 CA148065 and X01HG007492); and Cancer Research UK (C1287/A10118 and C1287/A16563). BCAC is funded by Cancer Research UK (C1287/A16563), by the European Community’s Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS) and by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreements 633784 (B-CAST) and 634935 (BRIDGES). Genotyping of the iCOGS array was funded by the European Union (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program, and the Ministry of Economic Development, Innovation and Export Trade of Quebec, grant PSR-SIIRI-701. Combining of the GWAS data was supported in part by The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative grant U19 CA 148065 (DRIVE, part of the GAME-ON initiative)
The synthesis of 7-deazaguanines as potential inhibitors of guanosine triphosphate cyclohydrolase 1
Variously substituted 7-deazaguanines are of interest as inhibitors of GTP cyclohydrolase I, the first enzyme in the biosynthetic pathway leading to dihydrofolate and tetrahydrobiopterin. Methods are described for the synthesis of 7-deazaguanines substituted at positions 2, 6 and 9 (purine numbering) such that a wide diversity of compounds can be prepared. These methods supplement our previous work that established routes for the synthesis of 7- and 8-substituted 7-deazaguanines. Emphasis is placed on the properties of 2-thioalkyl pyrimidines as intermediates because they provide the basis for a traceless solid-state synthesis of purines, pteridines, and their analogues. Compounds prepared have been assessed in a primary screen for their ability to inhibit GTPCH I and 8-methyldeazaguanine has been shown to be significantly more potent than any inhibitor yet described. Several compounds appeared to undergo transformation by GTPCH I; with the aid of a model reaction, their behaviour can be interpreted in the context of the mechanism of the hydrolytic phase of GTPCH I