270 research outputs found

    Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar

    Get PDF
    Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ~1100 m above ground level, where displacement speeds of up to ~60 km/h were recorded, however most ladybirds were found between ~150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a "typical" high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude insect flight and has important implications for predicting long-distance dispersal. © 2013 Jeffries et al

    Limited dispersion and quick degradation of environmental DNA in fish ponds inferred by metabarcoding

    Get PDF
    Background Environmental DNA (eDNA) metabarcoding is a promising tool for rapid, non‐invasive biodiversity monitoring. Aims In this study, eDNA metabarcoding is applied to explore the spatial and temporal distribution of fish communities in two aquaculture ponds and to evaluate the detection sensitivity of this tool for low‐density species alongside highly abundant species. Materials & Methods This study was carried out at two artificially stocked ponds with a high fish density following the introduction and removal of two rare fish species. Results & Discussion When two rare species were introduced and kept at a fixed location in the ponds, eDNA concentration (i.e., proportional read counts abundance) of the introduced species typically peaked after two days. The increase in eDNA concentration of the introduced fish after 43 hrs may have been caused by increased eDNA shedding rates as a result of fish being stressed by handling, as observed in other studies. Thereafter, it gradually declined and stabilised after six days. These findings are supported by the highest community dissimilarity of different sampling positions being observed on the second day after introduction, which then gradually decreased over time. On the sixth day, there was no longer a significant difference in community dissimilarity between sampling days. The introduced species were no longer detected at any sampling positions on 48 hrs after removal from the ponds. eDNA is found to decay faster in the field than in controlled conditions, which can be attributed to the complex effects of environmental conditions on eDNA persistence or resulting in the vertical transport of intracellular DNA and the extracellular DNA absorbed by particles in the sediment. The eDNA signal and detection probability of the introduced species were strongest near the keepnets, resulting in the highest community variance of different sampling events at this position. Thereafter, the eDNA signal significantly decreased with increasing distance, although the signal increased slightly again at 85 m position away from the keepnets. Conclusions Collectively, these findings reveal that eDNA distribution in lentic ecosystems is highly localised in space and time, which adds to the growing weight of evidence that eDNA signal provides a good approximation of the presence and distribution of species in ponds. Moreover, eDNA metabarcoding is a powerful tool for detection of rare species alongside more abundant species due to the use of generic PCR primers, and can enable monitoring of spatial and temporal community variance

    Microsatellite analysis to estimate genetic relationships among five bulgarian sheep breeds

    Get PDF
    Herein, genetic relationships among five breeds of Bulgarian sheep were estimated using microsatellite markers. The total number of alleles identified was 226 at the 16 loci examined. DA distance values were used for phylogenetic tree construction with the UPGMA algorithm. The two Tsigai and two Maritza populations were found to be geneticallvery closely related to each other y (0.198, and 0.258 respectively). The Pleven Black Head population was distinct from the other four. These results could be useful for preserving genes in these breeds, thereby ensuring their preservation in Bulgaria

    Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems

    Get PDF
    Environmental DNA (eDNA) metabarcoding has revolutionized biomonitoring in both marine and freshwater ecosystems. However, for semi-aquatic and terrestrial animals, the application of this technique remains relatively untested. We first assess the efficiency of eDNA metabarcoding in detecting semi-aquatic and terrestrial mammals in natural lotic ecosystems in the UK by comparing sequence data recovered from water and sediment samples to the mammalian communities expected from historical data. Secondly, using occupancy modelling we compared the detection efficiency of eDNA metabarcoding to multiple conventional non-invasive survey methods (latrine surveys and camera trapping). eDNA metabarcoding detected a large proportion of the expected mammalian community within each area. Common species in the areas were detected at the majority of sites. Several key species of conservation concern in the UK were detected by eDNA sampling in areas where authenticated records do not currently exist, but potential false positives were also identified. Water-based eDNA metabarcoding provided comparable results to conventional survey methods in per unit of survey effort for three species (water vole, field vole and red deer) using occupancy models. The comparison between survey ‘effort’ to reach a detection probability of ≄.95 revealed that 3–6 water replicates would be equivalent to 3–5 latrine surveys and 5–30 weeks of single camera deployment, depending on the species. Synthesis and applications. eDNA metabarcoding can be used to generate an initial ‘distribution map’ of mammalian diversity at the landscape level. If conducted during times of peak abundance, carefully chosen sampling points along multiple river courses provide a reliable snapshot of the species that are present in a catchment area. In order to fully capture solitary, rare and invasive species, we would currently recommend the use of eDNA metabarcoding alongside other non-invasive surveying methods (i.e. camera traps) to maximize monitoring efforts. © 2020 British Ecological Societ

    Female-Biased Dispersal and Gene Flow in a Behaviorally Monogamous Mammal, the Large Treeshrew (Tupaia tana)

    Get PDF
    Background: Female-biased dispersal (FBD) is predicted to occur in monogamous species due to local resource competition among females, but evidence for this association in mammals is scarce. The predicted relationship between FBD and monogamy may also be too simplistic, given that many pair-living mammals exhibit substantial extra-pair paternity. Methodology/Principal Findings: I examined whether dispersal and gene flow are female-biased in the large treeshrew (Tupaia tana) in Borneo, a behaviorally monogamous species with a genetic mating system characterized by high rates (50%) of extra-pair paternity. Genetic analyses provided evidence of FBD in this species. As predicted for FBD, I found lower mean values for the corrected assignment index for adult females than for males using seven microsatellite loci, indicating that female individuals were more likely to be immigrants. Adult female pairs were also less related than adult male pairs. Furthermore, comparison of Bayesian coalescent-based estimates of migration rates using maternally and bi-parentally inherited genetic markers suggested that gene flow is female-biased in T. tana. The effective number of migrants between populations estimated from mitochondrial DNA sequence was three times higher than the number estimated using autosomal microsatellites. Conclusions/Significance: These results provide the first evidence of FBD in a behaviorally monogamous species without mating fidelity. I argue that competition among females for feeding territories creates a sexual asymmetry in the costs an

    Evaluating Promotional Approaches for Citizen Science Biological Recording: Bumblebees as a Group Versus Harmonia axyridis as a Flagship for Ladybirds

    Get PDF
    Over the past decade, the number of biological records submitted by members of the public have increased dramatically. However, this may result in reduced record quality, depending on how species are promoted in the media. Here we examined the two main promotional approaches for citizen science recording schemes: flagship-species, using one charismatic species as an umbrella for the entire group (here, Harmonia axyridis (Pallas) for Coleoptera: Coccinellidae), and general-group, where the group is promoted as a whole and no particular prominence is given to any one species (here, bumblebees, genus Bombus (Hymenoptera: Apidae)). Of the two approaches, the general-group approach produced data that was not biased towards any one species, but far fewer records per year overall. In contrast, the flagship-species approach generated a much larger annual dataset, but heavily biased towards the flagship itself. Therefore, we recommend that the approach for species promotion is fitted to the result desired

    Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

    Get PDF
    Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size

    Optimising species detection probability and sampling effort in lake fish eDNA surveys

    Get PDF
    Environmental DNA (eDNA) metabarcoding is transforming biodiversity monitoring in aquatic environments. Such an approach has been developed and deployed for monitoring lake fish communities in Great Britain, where the method has repeatedly shown a comparable or better performance than conventional approaches. Previous analyses indicated that 20 water samples per lake are sufficient to reliably estimate fish species richness, but it is unclear how reduced eDNA sampling effort affects richness, or other biodiversity estimates and metrics. As the number of samples strongly influences the cost of monitoring programmes, it is essential that sampling effort is optimised for a specific monitoring objective. The aim of this project was to explore the effect of reduced eDNA sampling effort on biodiversity metrics (namely species richness and community composition) using algorithmic and statistical resampling techniques of a data set from 101 lakes, covering a wide spectrum of lake types and ecological quality. The results showed that reliable estimation of lake fish species richness could, in fact, usually be achieved with a much lower number of samples. For example, in almost 90% of lakes, 95% of complete fish richness could be detected with only 10 water samples, regardless of lake area. Similarly, other measures of alpha and beta-diversity were not greatly affected by a reduction in sample size from 20 to 10 samples. We also found that there is no significant difference in detected species richness between shoreline and offshore sampling transects, allowing for simplified field logistics. This could potentially allow the effective sampling of a larger number of lakes within a given monitoring budget. However, rare species were more often missed with fewer samples, with potential implications for monitoring of invasive or endangered species. These results should inform the design of eDNA sampling strategies, so that these can be optimised to achieve specific monitoring goals

    Three Thousand Years of Continuity in the Maternal Lineages of Ancient Sheep (Ovis aries) in Estonia

    Get PDF
    lthough sheep (Ovis aries) have been one of the most exploited domestic animals in Estonia since the Late Bronze Age, relatively little is known about their genetic history. Here, we explore temporal changes in Estonian sheep populations and their mitochondrial genetic diversity over the last 3000 years. We target a 558 base pair fragment of the mitochondrial hypervariable region in 115 ancient sheep from 71 sites in Estonia (c. 1200 BC – AD 1900s), 19 ancient samples from Latvia, Russia, Poland and Greece (6800 BC – AD 1700), as well as 44 samples of modern Kihnu native sheep breed. Our analyses revealed: (1) 49 mitochondrial haplotypes, associated with sheep haplogroups A and B; (2) high haplotype diversity in Estonian ancient sheep; (3) continuity in mtDNA haplotypes through time; (4) possible population expansion during the first centuries of the Middle Ages (associated with the establishment of the new power regime related to 13th century crusades); (5) significant difference in genetic diversity between ancient populations and modern native sheep, in agreement with the beginning of large-scale breeding in the 19th century and population decline in local sheep. Overall, our results suggest that in spite of the observed fluctuations in ancient sheep populations, and changes in the natural and historical conditions, the utilisation of local sheep has been constant in the territory of Estonia, displaying matrilineal continuity from the Middle Bronze Age through the Modern Period, and into modern native sheep
    • 

    corecore