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Abstract

Environmental DNA (eDNA) metabarcoding is transforming biodiversity monitoring in 
aquatic environments. Such an approach has been developed and deployed for moni-
toring lake fish communities in Great Britain, where the method has repeatedly shown 
a comparable or better performance than conventional approaches. Previous analyses 
indicated that 20 water samples per lake are sufficient to reliably estimate fish species 
richness, but it is unclear how reduced eDNA sampling effort affects richness, or oth-
er biodiversity estimates and metrics. As the number of samples strongly influences 
the cost of monitoring programmes, it is essential that sampling effort is optimised 
for a specific monitoring objective. The aim of this project was to explore the effect of 
reduced eDNA sampling effort on biodiversity metrics (namely species richness and 
community composition) using algorithmic and statistical resampling techniques of a 
data set from 101 lakes, covering a wide spectrum of lake types and ecological quality. 
The results showed that reliable estimation of lake fish species richness could, in fact, 
usually be achieved with a much lower number of samples. For example, in almost 90% 
of lakes, 95% of complete fish richness could be detected with only 10 water samples, 
regardless of lake area. Similarly, other measures of alpha and beta-diversity were not 
greatly affected by a reduction in sample size from 20 to 10 samples. We also found 
that there is no significant difference in detected species richness between shoreline 
and offshore sampling transects, allowing for simplified field logistics. This could poten-
tially allow the effective sampling of a larger number of lakes within a given monitoring 
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budget. However, rare species were more often missed with fewer samples, with po-
tential implications for monitoring of invasive or endangered species. These results 
should inform the design of eDNA sampling strategies, so that these can be optimised 
to achieve specific monitoring goals.
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Introduction

Environmental DNA (eDNA) metabarcoding of water samples is now regular-
ly used for the detection and monitoring of fish species and the assessment 
of fish community structure (Wang et al. 2021). It is a non-invasive method 
which can be more effective at detecting elusive species than established in-
vasive surveying techniques such as electrofishing, fyke netting or gill netting 
(Hänfling et al. 2016a; Pont et al. 2018; Lawson Handley et al. 2019; Griffiths 
et al. 2020; McElroy et al. 2020; Czeglédi et al. 2021; Pukk et al. 2021). Aquatic 
eDNA metabarcoding relies on the capture, extraction and sequencing of DNA 
within a water sample from a water body or a watercourse. However, DNA 
is rarely homogeneously distributed in aquatic environments (Beentjes et al. 
2019; Lawson Handley et al. 2019; Bedwell and Goldberg 2020; Pukk et al. 
2021). This is especially true in lentic environments where the dispersion of 
eDNA through hydraulic processes is often limited compared to lotic or ma-
rine environments Harrison et al. (2019). Caging experiments have shown that 
fish detection probability declines strongly within metres from the source in 
ponds (Li et al. 2019b; Brys et al. 2021) and tens of metres in lakes Dunker et 
al. (2016). Hence fish species detection relies on the collection of an adequate 
number of samples from a water body and their appropriate spatial distribution 
to capture the heterogeneity of the eDNA signal (Bruce et al. 2021). Multiple 
environmental processes affect the dispersion and degradation of eDNA in 
aquatic ecosystems including biotic mechanisms such as microbial commu-
nities and abiotic mechanisms such as ph, temperature and hydrology (Barnes 
and Turner 2015; Harrison et al. 2019). The presence of thermal stratification 
has been shown to lead to a more localised distribution of eDNA in lake ecosys-
tems compared to well-mixed conditions with implications for the design of ef-
fective sampling strategies as (Lawson Handley et al. 2019; Hervé et al 2022). 
Because of the seasonal variation in lake stratification and activity of individual 
species, the timing of sampling is an important consideration for sampling in 
lentic systems (Hayami et al. 2020). Sampling strategies also vary according 
to the research question and are generally more intensive for detection of rare 
and/or low abundance species (Jerde et al. 2011; Dejean et al. 2012; Piggott 
et al. 2021) and determining fish species richness in high diversity ecosystems 
(Cantera et al. 2019; Blackman et al. 2021), than when the requirement is sim-
ply to establish the presence of common, widely distributed species (Sato et al. 
2017). It is therefore important to determine the minimum number of samples 
required to achieve a specific outcome as cost effectiveness is essential for 
most biomonitoring programmes (Milián-García et al. 2021).

In this context, the UK Technical Advisory Group (UKTAG) on the European 
Union Water Framework Directive (WFD) initiated a research programme to 
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evaluate the suitability of eDNA metabarcoding approaches for monitoring lake 
fish communities, largely with the objective to develop a tool which is compat-
ible with requirements under the WFD, i.e. to assess the ecological status of 
lakes. The research output of the original pilot study was published in 2016 
(Hänfling et al. 2016a), with subsequent development of the method published 
in Li et al. (2018), Sellers et al. (2018) and Lawson Handley et al. (2019). The 
findings of this pilot demonstrated that 20 water samples were sufficient to de-
tect the vast majority of fish species from England’s largest lake, Windermere, 
and to provide ecologically meaningful relative abundance estimates (Hänfling 
et al. 2016). Subsequent results indicated that maximum species richness 
could be achieved by simply collecting samples from the shoreline during win-
ter, likely due to increased water mixing as a result of more turbulent condi-
tions (e.g. greater rainfall and winds) and less thermal stratification (Lawson 
Handley et al. 2019). A recent comprehensive literature review concluded that 
there is still insufficient knowledge about the required extent of spatial sam-
pling to efficiently characterise fish communities in lentic systems to provide 
clear guidance on sampling strategies (Yao et al. 2022).

The primary aim of this study was to carry out a comprehensive analysis 
of an eDNA metabarcoding data set encompassing 101 lakes representing a 
range of lake types and environments across Great Britain. Our objective was 
to investigate how sample quantity and sampling location affect the estimation 
of fish biodiversity metrics, specifically species richness, community composi-
tion using both random and non-random data resampling techniques. To date, 
the number of samples necessary to achieve a 95% coverage threshold of the 
total species detected has received limited attention, but this is a critical aspect 
for optimising the cost-effectiveness of monitoring programmes. Based on the 
normal asymptotic shape of species accumulation curves, we hypothesise that 
a reduction in the number of water samples from the original data set will still 
be adequate to detect most fish species in any given UK lake, regardless of its 
area. We further hypothesise, based on our previous study, that biodiversity 
metrics obtained from shoreline and offshore samples do not differ significant-
ly within lakes.

Methods

Study lakes and water sample collection

We utilised eDNA metabarcoding data from 101 lakes which were sampled 
between January 2015 and March 2019 largely during the winter season 
(November - March, Fig. 1). This includes previously published data from 14 
Cheshire Meres and Welsh lakes (Li et al. 2019a). Lakes were chosen to rep-
resent various typologies (UKTAG 2004) representative across Great Britain, 
including alkalinity and ecological quality (Fig. 1). The surface area spec-
trum ranged from Scoat Tarn (4.3 ha) to Great Britain’s largest, Loch Lomond 
(5158.7 ha), and included shallow lowland lakes as well as deep upland lakes. 
Even the northernmost British lakes including those sampled in this study are 
rarely covered by winter ice and typically do not exhibit significant winter strati-
fication. A pre-existing classification of lake quality based on fully intercalibrat-
ed methodologies for assessing ecological status according to the EU Water 
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Framework Directive (Birk et al. 2013) was available for all lakes which inte-
grated the official classifications reported since 2009 for Total Phosphorus, 
phytoplankton, macrophytes, diatoms and littoral invertebrates (Fig. 1B). A con-
sistent approach was used for sample collection and filtration as described in 
Hӓnfling et al. (2016b, 2016c; Hänfling et al. 2020). Shoreline samples were 
collected from all 101 lakes. Each individual shoreline sample contained 2 L 
of surface water and was composed of subsamples from five points along a 
100 m transect, parallel to the shoreline. Where possible, 20 shoreline samples 
were collected at roughly equidistant points around the perimeter of each lake. 
Due to logistic constraints and varying objectives during early project phases, 
the actual number of shoreline samples collected across all lakes ranged from 
10 to 21 shoreline samples (mean 17.74 ± 4.01 SD). An additional 8 to 25 off-
shore samples (mean 14.10 ± 5.67 SD) were collected from 20 of the lakes 
using a Friedinger or Ruttner sampler deployed at a specified depth. Each 2 L 
offshore sample was a composite of 5 × 400 mL samples collected from five 
points within a radius of 100 m around the sampling point. Each subsample 
was collected at a different depth covering the entire water column from sur-
face to 1 m above the lake bottom. At least one field blank was included for 
each lake. A 2 L bottle containing purified water was carried alongside water 
sampling and stored with the samples during transport.

Water filtration and DNA extraction

Samples were stored immediately in cool boxes on ice, and filtered within 24 
hours of collection. Samples were vacuum filtered through sterile Whatman 
0.45 μm 47 mm cellulose nitrate membrane or mixed cellulose ester filters 

Figure 1. Distribution and characteristics of 101 UK lakes sampled for eDNA in this study. Shown are alkalinity type 
(left) and existing EU Water Framework Directive (WFD) classification (right) for each lake that takes account of Total 
Phosphorus, phytoplankton, diatoms, macrophyte and littoral invertebrates. For alkalinity types: High = >50 mg/L CaCO3; 
Medium = 10–50 mg/L CaCO3; Low =<10 mg/L CaCO3. WFD classifications are based on an aggregate view of data for 
biological and physicochemical quality elements collected over the previous five years. Reproduced based on data from 
Willby et al. (2019).
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(GE Healthcare). Two litres were filtered when possible, but filtration time was 
capped at one hour. Two filters were used for turbid samples, and later com-
bined in a single DNA extraction step. Filters for each sample were stored sep-
arately at -20 °C until extraction.

Two slightly different but related protocols were used for DNA extraction 
over the course of the project. During the initial phase (2015–2017; n = 20 
lakes; Hänfling et al. 2016a; Li et al. 2019a; Lawson Handley et al. 2019), DNA 
was extracted from filters using the MoBio PowerWater DNA Isolation Kit (now 
Qiagen DNeasy PowerWater Kit). In later phases (2017 - present, n = 81 lakes), 
DNA was extracted from filters using the Mu-DNA Water protocol (Sellers at 
al. 2018). A direct comparison between both methods revealed no evidence of 
bias or difference in detection probabilities (Sellers et al 2018). Field and ex-
traction blanks were extracted alongside samples using the relevant protocol. 
Extraction blanks, having no filter, consisted of the reagents used in each step 
of the relevant protocol.

Sequencing library preparation

All samples were processed and sequenced following metabarcoding pro-
tocols established at the University of Hull using a vertebrate-specific 12S 
marker, amplifying a ~106 bp fragment in fish (Riaz et al. 2011; Kelly et al. 
2014). Genomic DNA from non-native cichlid species (Astatotilapia calliptera, 
Maylandia zebra and Rhamphochromis esox) were used as PCR positive con-
trols during library preparation.

Modifications to improve the molecular protocols were made between dif-
ferent phases of the project. In the pilot stage of the project (2015, n = 2 lakes), 
samples were PCR amplified with a one-step library preparation protocol fol-
lowing (Kozich et al. 2013) (see Hänfling et al. 2016a for full details). Following 
the pilot project, the protocol was further developed (2015–2017, n = 18 lakes), 
adopting PCR amplification using a two-step nested tagging library preparation 
(Kitson et al. 2019; see Li et al. 2019a; Lawson Handley at al. 2019 for full de-
tails). The most current protocol (2017 - present, n = 81 lakes) followed that of 
the nested tagging, where 24 unique tags were used for both the forward and 
reverse primers. Regardless of protocol, all samples were PCR amplified in trip-
licate, then the corresponding replicates were pooled for sequencing. For full 
details of the current library preparation method, see Suppl. material 1.

Bioinformatics and data set clean-up

Raw sequence data were analysed using the same bioinformatics pipeline as 
described in Hänfling et al. (2016a) and Li et al. (2019a). In summary, sequenc-
ing reads from all lakes underwent taxonomic assignment against a curated UK 
fish species reference database using a custom bioinformatics pipeline, me-
taBEAT (https://github.com/HullUni-bioinformatics/metaBEAT). The workflow 
consisted of the following steps: 1) demultiplexing; 2) trimming, quality filtering 
and merging; 3) chimera detection; 4) clustering; 5) taxonomic assignment. For 
full details of the bioinformatics workflow, see Suppl. material 1.

Following taxonomic assignment, a noise threshold of 0.1% of total reads per 
sample was applied to remove low frequency reads (Hänfling et al. 2016a). Most 

https://github.com/HullUni-bioinformatics/metaBEAT
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reads were assigned to the species level, but as the molecular marker used here 
cannot distinguish certain species reliably, the reads belonging to these spe-
cies were assigned to the next possible highest taxonomic level. Specifically, 
species belonging to the genera Coregonus, Lampetra and Salvelinus were as-
signed to genus level, and two members of the family Percidae (Perca fluviatilis, 
Sander lucioperca) were assigned to family level. Reads nominally assigned to 
Lota lota were excluded, primarily as the species is considered extinct in the 
UK, but also because the sequenced marker region is identical to that of the 
marine species Gadus morhua, a potential environmental contaminant via the 
human food chain. All remaining assignments to taxonomic levels higher than 
species were excluded from the analysis. Samples with fewer than 1,000 total 
reads or with no taxonomically assignable reads were removed. Finally, reads 
assigned to positive controls were removed from the data set.

Biodiversity metrics

Species richness was calculated as the total number of fish species detected 
within each sample (α-diversity) and across all samples for each lake (γ-diver-
sity). Species richness estimates were calculated based on all samples of each 
lake and for each reduced sample number replicate to ascertain the differenc-
es between the original lake data set and that of its resampled subsets.

We also calculated two biodiversity metrics based on the relative proportion 
of reads for each species using “Vegan” version 2.5.6 (Oksanen et al. 2019). 
Simpson’s reciprocal index as a measure of evenness based sample diversi-
ty and Bray-Curtis dissimilarity as a measure of difference in fish community 
structure between samples. As read counts from eDNA metabarcoding data 
have been shown to correlate strongly with actual recorded abundance and 
biomass of fish communities within UK freshwater systems (Li et al. 2019a; Di 
Muri et al. 2020) these evenness based metrics contain meaningful ecological 
information. However, such an inference is not an assumption of our analysis 
per se as we utilise evenness-based biodiversity metrics for assessing relative 
changes induced by sampling. This approach does not necessitate a biological 
interpretation of the eDNA reads.

Effect of sample number on lake fish biodiversity metrics

Three principal approaches were used to evaluate the effect of sampling effort 
on fish detection and community composition estimation from eDNA metabar-
coding: rarefaction based species accumulation curves, statistical estimation 
of sampling threshold and data resampling techniques.

Species accumulation curves and statistical estimation of sampling 
threshold

The taxonomic completeness of sampling in individual lakes was assessed 
through rarefaction based species accumulation curves. Sampling threshold 
was calculated as the minimum number of samples required to achieve 95% 
of complete species richness for a given lake, which is independent of species 
richness and therefore comparable across different lakes. Presence/absence 
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data were used to determine the “sample coverage”, an estimate of sample 
completeness, defined as the proportion of taxa in the community detected 
in the sample (Chao et al. 2014). Species accumulation and sample coverage 
were generated with “iNEXT” version 2.0.20 (Hsieh et al. 2020). We investigated 
the effect of lake area, species richness and lake alkalinity type on sampling 
threshold using Pearson rank correlations and Kruskal Wallis tests respectively.

Random resampling of lake fish eDNA metabarcoding data

A bootstrapping without replacement approach was used to generate replicate 
data sets with reduced sample numbers for each lake. In order to improve com-
parability across the data set, only lakes with ≥ 15 samples (82 lakes) were used 
for resampling. For each lake set consisting of n samples (n ranging from 15–
20), all possible unique sample combinations at different sample sizes were 
generated, with sample size ranging from 2 to a maximum of n-2. The number 
of possible sample combinations drawn without replacement varies depending 
on total n and ranges from 105 (n = 15, 13 samples drawn) to 184,756 (n = 20, 
10 samples drawn). For each lake, subsets of 100 unique combinations were 
randomly drawn and used as resampling replicates per sample size. Using this 
approach, there was no chance of a sample occurring more than once within a 
replicate, representing the reality of resampling lake samples.

The effect of sample number on species detection and community compo-
sition estimates was investigated as follows. First, the number of undetected 
taxa compared to the full data set was calculated for all combinations at each 
sample size. Here we tested for Spearman’s rank coefficient correlations be-
tween the number of undetected species with total observed species richness 
and lake area. Values of 1, 2 and 3 were used for minimum undetected species 
thresholds. The sample size at which 95% of the lakes achieved less than these 
thresholds was considered. Second, the average deviation of a given sample 
combination’s community composition (proportion reads) from the full lake 
sample composite was quantified for each sample size using pairwise dissim-
ilarity measures (Bray-Curtis dissimilarity index). In order to quantify the effect 
across all lakes, the proportion of lakes which fall above an arbitrary dissimilar-
ity value (0.1) at each sample size was calculated.

Simpson’s reciprocal index was calculated using read counts per species for 
each lake for all combinations at each sample size and compared to the lake 
as a whole. The proportion variance between the values was used to gauge the 
level of overestimation or underestimation. All dissimilarity indices were calcu-
lated using “Vegan” version 2.5.6 (Oksanen et al. 2019)

Non-random reduced sampling of lake metabarcoding data

Random resampling provides the opportunity to explore a wide range of sam-
ple numbers but ignores the spatial context in which the samples are collected. 
Hence, under the assumption that eDNA is not randomly distributed, random 
resampling might not represent a realistic (e.g. spatially dispersed) sampling 
strategy. For example, with the data set analysed here, samples were collected 
at equidistant points around a lake perimeter. To address this, we employed a 
hold-out method, which better reflected the original sampling design by splitting 
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the samples from each lake into two interleaved subsets, i.e. two sets of 10 equi-
distantly distributed samples. Practically, this was achieved by grouping sam-
ples into odd and even sample numbers since samples were continuously num-
bered along the shoreline transect. Only lakes with exactly 20 samples (n = 63) 
were used for this comparison. Number of undetected species and dissimilarity 
indices were calculated for each lake subset as above and tested against the 
maximum threshold values decided for each (1 and 0.1 for undetected species 
and dissimilarity indices respectively). The possible effect of total species rich-
ness and lake area on the size of differences in species detection between odd 
and even subsets was assessed using Spearman’s rank coefficient correlations.

Shoreline sampling validation

The data from shoreline and offshore samples were compared in lakes where 
both sample types were available (n = 20) to evaluate the generality of the find-
ings from (Lawson Handley et al. 2019) that both sample types generate simi-
lar biodiversity estimates during the winter season.

We determined if detected species richness was affected by sample type with 
a linear mixed effect model. Log transformed species richness, with sample type 
as a covariate and lake as a random variable, was compared to the null model 
(no covariate of transect) with a chi-squared test of model likelihoods. Linear 
model analysis was performed with “lme4” version 1.1.3 (Bates et al. 2015)

Non-metric multidimensional scaling (NMDS) ordination, based on Bray-
Curtis distances, was used to visualise differences in community estimates 
(relative abundance) between transects and the whole lake (combined tran-
sects), An analysis of similarities (ANOSIM) (Bray-Curtis dissimilarity index, 
105 permutations) was performed to test if there were differences in relative 
species abundance between shoreline and offshore samples within each lake. 
NMDS ordination, based on Bray-Curtis distances, was used to visualise dif-
ferences in relative abundance between transects. ANOSIM and NMDS was 
carried out using “Vegan” version 2.5.6 (Oksanen et al. 2019)

All analyses were performed using R version 4.0.5 (R Core Team 2021).

Results

Bioinformatics and data set clean-up

After taxonomic assignment, average sample read counts within lakes for each 
of the 101 lakes (including both shoreline and offshore samples) ranged from 
13,384.30 to 101,526.60 (mean 52,646.1 ± 21,979.24 SD). Of these 2,134 sam-
ples, 2,074 remained following data set clean-up.

Effect of sample number on lake fish species biodiversity metrics

The final cleaned data set for all 101 lakes used for resampling analysis con-
sisted of 1,792 shoreline samples. Individual lakes ranged from having 7 to 20 
successfully sequenced samples with the majority (n = 63) having 20 samples. 
A total of 40 fish taxa were recorded across all lakes. Fish taxon richness per 
lake ranged from 2 to 18 (mean 7.71 ± 3.36 SD).
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Species accumulation curves

Based on species accumulation estimates (Fig. 2), the majority of lakes (n = 82) 
had sufficient samples to detect the total species number predicted by extrap-
olation to 40 samples. In 10 of the remaining 19 lakes, one or more species 
remained undetected, and in nine lakes, two or more species remained unde-
tected. Lakes where one or more species were potentially undetected through 
inadequate sampling effort tended to have higher species richness (14 of the 
19 lakes had a detected species richness ≥ 10).

Sampling threshold

Regardless of actual sample size, all but five of the 101 lakes achieved sam-
ple coverage ≥ 95% for fish species detection at 20 samples (Fig. 3A), with 93 
lakes achieving ≥ 95% sample coverage with a sample size of 10. A total of 96 
out of 101 lakes achieved ≥ 95% sample coverage at a sample size of 11 (Fig. 
3B). The sampling threshold for lakes ranged from 1 to 25 samples with the 
mean sample threshold at 5.37 (± 4.56 SD). Sampling threshold correlated with 
total species richness (rs = 0.41, p < 0.05). There was no correlation between 
sampling threshold and lake surface area (rs = -0.09, p = 0.39) or difference in 
sampling threshold between alkalinity types (high, medium and low) (Kruskal-
Wallis: X2 = 3.63, df = 2, p = 0.16).

Random resampling of lake metabarcoding data

The number of undetected fish species steadily decreased with increasing 
sample size (Fig. 4A). The point at which 95% of the lakes fall below the thresh-
olds of 1, 2 or 3 mean species undetected were at sample sizes of 14, 9 and 
6 respectively. Number of undetected species at a sample size of 10 (half the 

Figure 2. Species accumulation curves based on rarefaction for all 101 lakes used in 
this study. Grey indicates lakes with fewer than 1 estimated species undetected, yellow 
is lakes with fewer than 2 estimated species undetected and red is lakes with more 
than 2 estimated species undetected. Solid lines are interpolated, and dashed lines are 
extrapolated. All lakes are extrapolated to a sample size of 40 for uniformity.
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ideal sample size of 20 aimed for during the project) correlated with total spe-
cies richness (rs = 0.72, p < 0.05), implying that lakes with more species re-
quire a greater sampling effort for a given level of detection. There was no cor-
relation between undetected species at sample size 10 and lake surface area 
(rs = 0.07, p = 0.51). The dissimilarity index of community composition also 
decreased continuously with increasing sample size and ≥ 95% of the lakes fell 
below a mean dissimilarity index threshold of 0.1 (i.e. were more similar) at a 
sample size of 15 (Fig. 4B). Simpson’s reciprocal index tended toward an un-
derestimate of the lake as a whole at sample sizes less than 8 (Fig. 4C). Again, 
the amount of variance decreased and estimated indices became closer to the 
whole lake values with increased sample size.

Figure 3. Sample coverage for all 101 UK lakes used in this study. Sample size cut off 
at 20 for uniformity A lake sample coverage. Solid red lines are the interpolated sam-
ple coverage. Dashed red lines are extrapolated sample coverage. Grey area shows the 
range of upper and lower confidence intervals. Horizontal dashed line indicates 95% 
sample coverage (i.e. sampling threshold) B cumulative count of lakes with ≥ 95% sam-
ple coverage per sample size. Vertical dashed line indicates sample size at which ≥ 95% 
of lakes achieve ≥ 95% sample coverage.
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Non-random reduced sampling of lake fish species metabarcoding data

In most cases, the number of undetected species was equal between lake sub-
sets (n = 34) or differed by only a single species (n = 21) (Fig. 5A). In 27 of the 
63 lakes, all species present were detected in both subsets. However, in a few 
cases (n = 8) the number of undetected fish species differed greatly between 
subsets. The size of differences in species detection between odd and even 

Figure 4. Random resampling of lake fish metabarcoding data from 82 lakes used in this study. All lakes analysed had 
a successfully sequenced sample size of ≥ 15 (maximum 20). The effects on three metrics used in the analysis are 
shown A undetected fish species counts for a lake at a given sample size. Vertical dashed lines indicate sample sizes at 
which ≥ 95% of lakes fell below the thresholds of 1, 2 or 3 species undetected (sample sizes of 14, 9 and 6 respectively) 
B Bray-Curtis dissimilarity index of fish communities for a lake at a given sample size to that of the whole lake. Vertical 
dashed line indicates sample size at which ≥ 95% of lakes achieved a mean sample dissimilarity index below an arbitrary 
threshold of 0.1 (horizontal dashed line) C proportion variance in Simpson’s reciprocal index for a lake at a given sample 
size to that of the whole lake. In all figures, each point represents the mean of each metric for 100 unique resampling 
replicates of a lake at a given sample size. Solid lines show the mean of all points at a sample size.
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subsets correlated with total species richness (rs = 0.37, p < 0.05). There was 
no correlation with lake surface area (rs = -0.04, p = 0.78). Differences in the 
Bray-Curtis dissimilarity indices of the fish communities represented in odd 
and even subsets per lake were generally very small and equally dissimilar to 
the whole lake fish community (Fig. 5B). All but three of the lakes had dissim-
ilarity indices for both subsets below the 0.1 threshold. Simpson’s reciprocal 
indices were highly similar for the majority of lakes with only four having more 

Figure 5. Non-random reduced sampling of lake fish metabarcoding data from 63 lakes used in this study. All lakes 
had 20 samples divided into odd (triangles) and even (inverted triangles) 10-sample subsets A undetected fish species 
counts calculated from comparison of each 10-sample subset to the whole lake B Bray-Curtis dissimilarity index of fish 
communities calculated from comparison of each subset community composition (proportion reads) to the whole lake. 
Horizontal dashed line indicates the decided dissimilarity index threshold (0.1) C Simpson’s reciprocal index for odd and 
even subsets in comparison to the whole lake (circles). In all figures, vertical lines are visual links for corresponding lake 
whole, odd and even subsets. Lakes are ordered by surface area on the x-axis with size increasing from left to right.
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pronounced differences between subsets and the whole lake (Fig. 5C). There 
was no tendency between subsets toward overestimation (odd = 31, even = 25) 
or underestimation (odd = 32, even = 38) of the index to that of the whole lake.

Shoreline sampling validation

A total of 34 species were present across the 20 lakes used to validate shore-
line sampling, with 33 species detected in shoreline and 28 in offshore sam-
pling transects (Fig. 6). Six species (Alosa alosa, Ameiurus sp., Barbus barbus, 
Blicca bjoerkna, Leucaspius delineatus and Platichthys flesus) were unique to 
shoreline transects with only a single species unique to offshore transects 
(Pseudorasbora parva) (Fig. 6).

There were species unique to each transect type (i.e. shoreline and offshore) 
in all but one of the lakes, Loch Lubnaig (Fig. 7A). In eight of the 20 lakes, these 
unique species occurrences were only in shoreline samples and in 4 lakes only 
in the offshore samples (Fig. 7A). The majority of species detected in any given 
lake were shared between both transect types.

Species richness showed no significant difference between transects 
(X2 = 0.121, df = 1, p = 0.728). The proportion of total species detected in tran-
sects was similar across all lakes (Fig. 7B); shoreline transects ranged from 
62.5% to 100% of species detected (mean 87.36 ± 14.13 SD), and offshore 
from 55.65% to 100% (mean 85.43 ± 13.43 SD). With the exception of species 
detected only in shoreline (n = 6) or offshore (n = 1) samples, all species had 
similar lake occupancy scores (Fig. 6), while the exceptional species occurred 

Figure 6. Species lake occupancy for shoreline and offshore sampling transects across the 20 lakes used to validate 
shoreline sampling. The number of lakes a species was detected in shoreline and offshore sampling transects is shown. 
Species are ranked by total shoreline and offshore lake occupancy.
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in a minority of lakes and in a minority (typically 10%) of samples from within 
those lakes.

Non-metric multidimensional scaling of whole lake fish community esti-
mates (species proportion reads) demonstrated there were some differenc-
es between shoreline and offshore sampling transects (Fig. 8). However, with 
the exception of nine of the selected 20 lakes (those with extended ellipses), 
all whole lake ordinations were tightly grouped with those of their respective 
shoreline and offshore transects.

In contrast, on an individual lake basis, ANOSIM tests showed that there 
were significant differences between transect species compositions in 11 of 
the 20 lakes (see Suppl. material 1: fig. S1).

Figure 7. Overall eDNA based species detection in sampling transects of the 20 lakes used to validate shoreline sam-
pling A detected species richness (grey) in shoreline and offshore sampling transects of each lake and unique species 
occurrences (red) for each lake B proportion of the total species detected using eDNA in shoreline and offshore sampling 
transects for each lake.
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Discussion

This study has shown that winter shoreline sampling is an effective approach to 
characterise the fish community of lakes in Great Britain. The application of algo-
rithmic and statistical resampling approaches demonstrated that 10–20 samples 
per lake are sufficient to detect most species and to reliably describe their relative 
abundance and a range of biodiversity metrics. Below we discuss the implications 
for designing eDNA metabarcoding surveys for lake fish communities in detail.

Effect of reduced sampling on species detection and community 
composition estimation

The results of the sample coverage analysis confirmed that the sampling design 
used to create the original data set, i.e. 20 samples from equidistant locations 
around the lake shore, provided a very reliable estimation of the true species rich-
ness with less than 5% of lakes (5 out of 101) having an estimated sample cover-
age below 95% at this sample size (Hänfling et al. 2016a; Willby et al. 2019) (Fig. 3). 
However, for most lakes the sample coverage curves started to reach a plateau at 
much lower sample numbers, indicating that the loss of signal is relatively small 
even with a substantially lower sampling effort. This was confirmed by the resa-
mpling analysis which indicated that in the majority of lakes, fewer than two spe-
cies remain undetected on average with a sample size of 10 randomly distributed 
samples, and there was an even lower rate of undetected species when samples 

Figure 8. Non-metric multidimensional scaling (NMDS) ordination for fish communities of the 20 lakes used to validate 
shoreline sampling. NMDS generated from species composition (proportion reads) estimates using Bray-Curtis dissimilarity 
method in three dimensions (stress = 0.09). All lakes were divided into shoreline (triangles) and offshore (inverted triangles) 
transects. Whole lake (as both transects combined) ordinations (circles) are shown in relation to their shoreline and offshore 
transects. Ellipses denote the overall spread between transect composition estimates relative to that of the lake as a whole.
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are non-randomly distributed as would normally be the case. Interestingly, lake 
surface area does not directly influence the required sampling effort. However, 
as the required sample size increases with species richness, a priori knowledge 
of expected species richness informed by conventional sampling can be used to 
design efficient sampling strategies. The logistical effort of sampling is an im-
portant cost factor in eDNA-based monitoring programmes. Collection of fewer 
samples reduces person-hours in the field and also removes cost during down-
stream sample processing, such as filtration and molecular analysis.

While a reduction from 20 to 10 samples does not greatly affect ecological 
community analysis it does have drawbacks as the detection of locally rare or 
low abundance species is reduced. Therefore, sampling strategies aiming to 
provide accurate distribution records for species of conservation importance 
(e.g. endangered, or establishing invasive non-native species) which is one of 
the most common applications of eDNA based approaches (Piggott et al 2021; 
Yao et al 2022) should be based around higher sample numbers, i.e. a mini-
mum of 20 samples per lake. The reduced sampling approach is best suited to 
the lower diversity lakes of Great Britain where it reliably detected the common-
ly occurring species making it ideal for use with established fish-based water 
quality assessment metrics that are not reliant on rarer species (i.e. Willby et al. 
2019). Increased diversity, as is found in mainland European lakes and the rest 
of the world, will possibly demand an increase in sample size.

A further reduction in sample numbers could be achieved by collecting 
high volume samples over a transect rather than multiple point samples or 
at the major outflow of the lake. This is an alternative approach to the meth-
od described in this study and has been successfully employed in a number 
of studies to estimate species richness in lentic systems (Civade et al. 2016; 
Sepulveda et al. 2019; Schabacker et al. 2020) as well as large rivers (Pont et 
al 2018). However, this method does not provide information about the spatial 
distribution of species and occupancy- based abundance estimates as used in 
fish-based ecological quality assessment in Britain (Willby et al. 2019) and is 
therefore less adaptable to different project aims.

It is important to note that our results are influenced by the specific workflow 
used here. The detection probability of species through eDNA methods does 
not only depend on the number of samples taken within a habitat, but also on 
levels of replication during other stages of the workflow such as PCR and se-
quencing (Ficetola et al. 2015). Furthermore, the specific laboratory protocols 
such as the choice of extraction method, choice of primer, number of amplifi-
cation cycles or TaqPolymerase could also affect detection probability. Hence 
findings may differ if methods are used which have lower or higher detection 
probabilities within individual samples. For example, fewer samples than in-
dicated in our study might be needed if more than three PCR replicates per 
sample are used. However, it is likely that the broad trends we detected will be 
similar irrespective of such changes.

Spatio-temporal considerations of sampling

Our extensive resampling analysis of eDNA metabarcoding data collected from 
the shore of more than 100 lakes during the winter season showed that utilis-
ing 10–20 samples was sufficient for detecting most fish species present in a 
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typical lake in Great Britain. Moreover, within a smaller subset of lakes (n = 20) 
which included some of the UKs largest lakes that had both shoreline and off-
shore transect samples, we observed no differences in species diversity (i.e. 
number of species detected) between offshore and shoreline samples. These 
results strongly support the effectiveness of winter shoreline sampling as a reli-
able method for fish species detection in lakes of Great Britain. This conclusion 
is in line with previous research conducted in Windermere, England (Lawson 
Handley et al. 2019) and three Chinese lakes which were sampled during the 
autumn (Zhang et al. 2020). One contributing factor to the success of winter 
shoreline sampling might be that the specific hydrological processes affecting 
temperate are lacking during autumn and winter seasons. Increased water cir-
culation due to the absence of thermal stratification, facilitates eDNA dispersal 
from the deeper areas of the lake to the shore. Additionally, the low tempera-
tures during these seasons can slow down DNA degradation processes (Jo et 
al. 2019; Harrison et al. 2019). Further support for this comes from a study in 
three French lakes which also demonstrated that offshore sampling was un-
necessary when lakes lacked stratification (Hervé et al. 2022). In contrast, DNA 
dispersal might be more limited during warmer seasons. (Littlefair et al. 2021) 
showed that stratification of Canadian lakes prevented detection of deepwater 
species throughout the water column. Our investigation in Windermere also 
revealed a more localised distribution of eDNA during the summer, with fewer 
species detected in shoreline samples compared to winter (Lawson Handley et 
al. 2019). Additionally, studies on the spatial distribution of eDNA in summer 
ponds using cage experiments have shown a drastic decreases in eDNA detec-
tion probability after distances of 5–10 m from the source (Li et al. 2019a; Brys 
et al. 2021). Collectively, this evidence suggests that a sampling strategy based 
exclusively on shoreline sampling is effective during polymictic conditions in 
autumn and/or winter, but may be less effective during the summer months. As 
sample site access is a major logistical concern and shoreline sites are gener-
ally more accessible than offshore sites, removing the potential complications 
of boat use to access offshore sites would be highly beneficial for lake moni-
toring. Even in lakes with difficult land access to the shoreline, boat sampling of 
surface water near the shoreline is logistically easier than collecting samples 
in deeper water offshore that requires more specialised water sampling equip-
ment. These simpler logistics suggested by our results therefore further help 
to reduce the costs of lake eDNA sampling programmes. For example, pelagic/
profundal offshore species such as Coregonus and S. alpinus were detected by 
winter shoreline sampling.

While there was no evidence of a difference in detection probability be-
tween shoreline and offshore samples for any individual species across the 
entire data set, the species composition differed significantly between off-
shore and shoreline samples in 11 out of 20 lakes. However, these differ-
ences were relatively small compared to differences among lakes and main-
ly due to variation in relative abundance of some frequent species. Some 
rare species were only present in one of the two sample types. This is likely 
due to stochastic effects as there was no evidence of a systematic bias for 
individual species in relation to transect type across the data set (Fig. 6). 
These exceptional species were also rare within the lakes where they were 
found. Nevertheless, monitoring programmes need to consider potential 
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differences between offshore and shoreline samples when measuring tem-
poral trends in community composition and use a consistent sampling ap-
proach over time.

In the data set analysed here, we detected some fish species more typical-
ly associated with river systems (rheophilic fish) in lake water samples, such 
as European bullhead (Cottus gobio), grayling (Thymallus thymallus), lamprey 
(Lampetra spp.) and salmon (Salmo salar). Rivers have been shown to trans-
port eDNA over great distances (Deiner et al. 2016), although eDNA quantity 
decreases rapidly during this process (Pont et al. 2018). Hence some detec-
tions, especially rare ones, could reflect influence from upstream river water. 
However, rheophilic fish also occur in lake estuaries, stray into the lakes or uti-
lise lakes for a part of their life cycle (e.g. salmonids (Arostegui and Quinn 
2019)). From sequencing data alone, it is therefore impossible to disentangle if 
detection within a lake is true occupancy or transport of eDNA from upstream 
rivers. It is therefore more appropriate to regard the eDNA sampling in lakes as 
sampling of the lake itself and locally connected freshwater habitat.

Conclusion

The results of this study provide an important overview of how sampling effort 
and design affect various metrics of fish species richness in lakes which will 
provide guidance on optimising sampling strategies for individual projects. This 
will, however, require projects to have clear objectives and predefined standards 
in terms of acceptable error. As a general rule, to achieve an overview of species 
composition in relatively low fish diversity lakes, as is typical for many regions 
of Great Britain, 10 samples per lake taken during the winter season will suffice, 
regardless of lake surface area. However, sample size will need to be increased 
if detection of rarer species is required or is a priority, or when sampling high di-
versity lakes. These results are not necessarily directly transferable to other sys-
tems as different temperature regimes and hydrological conditions are likely to 
affect the spatial distribution and detection probability of eDNA in lentic systems. 
Although our understanding of these factors has improved considerably over the 
last ten years, there is still a knowledge gap in the effect of seasonal variation in 
detection in different ecosystems. The approach presented here should be seen 
as a framework for optimising sampling effort in other lentic ecosystems.
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