4,296 research outputs found

    Label-free Raman spectroscopic imaging to extract morphological and chemical information from a formalin-fixed, paraffin-embedded rat colon tissue section.

    Get PDF
    Animal models and archived human biobank tissues are useful resources for research in disease development, diagnostics and therapeutics. For the preservation of microscopic anatomical features and to facilitate long-term storage, a majority of tissue samples are denatured by the chemical treatments required for fixation, paraffin embedding and subsequent deparaffinization. These aggressive chemical processes are thought to modify the biochemical composition of the sample and potentially compromise reliable spectroscopic examination useful for the diagnosis or biomarking. As a result, spectroscopy is often conducted on fresh/frozen samples. In this study, we provide an extensive characterization of the biochemical signals remaining in processed samples (formalin fixation and paraffin embedding, FFPE) and especially those originating from the anatomical layers of a healthy rat colon. The application of chemometric analytical methods (unsupervised and supervised) was shown to eliminate the need for tissue staining and easily revealed microscopic features consistent with goblet cells and the dense populations of cells within the mucosa, principally via strong nucleic acid signals. We were also able to identify the collagenous submucosa- and serosa- as well as the muscle-associated signals from the muscular regions and blood vessels. Applying linear regression analysis to the data, we were able to corroborate this initial assignment of cell and tissue types by confirming the biological origin of each layer by reference to a subset of authentic biomolecular standards. Our results demonstrate the potential of using label-free Raman microspectroscopy to obtain superior imaging contrast in FFPE sections when compared directly to conventional haematoxylin and eosin (H&E) staining

    Rapid and complete paraffin removal from human tissue sections delivers enhanced Raman spectroscopic and histopathological analysis

    Get PDF
    Incomplete removal of paraffin and organic contaminants from tissues processed for diagnostic histology has been a profound barrier to the introduction of Raman spectroscopic techniques into clinical practice. We report a route to rapid and complete paraffin removal from a range of formalin-fixed paraffin embedded tissues using super mirror stainless steel slides. The method is equally effective on a range of human and animal tissues, performs equally well with archived and new samples and is compatible with standard pathology lab procedures. We describe a general enhancement of the Raman scatter and enhanced staining with antibodies used in immunohistochemistry for clinical diagnosis. We conclude that these novel slide substrates have the power to improve diagnosis through anatomical pathology by facilitating the simultaneous combination of improved, more sensitive immunohistochemical staining and simplified, more reliable Raman spectroscopic imaging, analysis and signal processing

    Thermodynamic instability of doubly spinning black objects

    Full text link
    We investigate the thermodynamic stability of neutral black objects with (at least) two angular momenta. We use the quasilocal formalism to compute the grand canonical potential and show that the doubly spinning black ring is thermodynamically unstable. We consider the thermodynamic instabilities of ultra-spinning black objects and point out a subtle relation between the microcanonical and grand canonical ensembles. We also find the location of the black string/membrane phases of doubly spinning black objects.Comment: 25 pages, 7 figures v2: matches the published versio

    Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation

    Get PDF
    Foreign body response (FBR) to biomaterials compromises the function of implants and leads to medical complications. Here, we report a hybrid alginate microcapsule (AlgXO) that attenuated the immune response after implantation, through releasing exosomes derived from human Umbilical Cord Mesenchymal Stem Cells (XOs). Upon release, XOs suppress the local immune microenvironment, where xenotransplantation of rat islets encapsulated in AlgXO led to >170 days euglycemia in immunocompetent mouse model of Type 1 Diabetes. In vitro analyses revealed that XOs suppressed the proliferation of CD3/CD28 activated splenocytes and CD3+ T cells. Comparing suppressive potency of XOs in purified CD3+ T cells versus splenocytes, we found XOs more profoundly suppressed T cells in the splenocytes co-culture, where a heterogenous cell population is present. XOs also suppressed CD3/CD28 activated human peripheral blood mononuclear cells (PBMCs) and reduced their cytokine secretion including IL-2, IL-6, IL-12p70, IL-22, and TNFα. We further demonstrate that XOs mechanism of action is likely mediated via myeloid cells and XOs suppress both murine and human macrophages partly by interfering with NFκB pathway. We propose that through controlled release of XOs, AlgXO provide a promising new platform that could alleviate the local immune response to implantable biomaterials

    Large enhancement of deuteron polarization with frequency modulated microwaves

    Get PDF
    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar files in poltar.uu, which also brings cernart.sty and crna12.sty files neede

    Identification of a Topological Characteristic Responsible for the Biological Robustness of Regulatory Networks

    Get PDF
    Attribution of biological robustness to the specific structural properties of a regulatory network is an important yet unsolved problem in systems biology. It is widely believed that the topological characteristics of a biological control network largely determine its dynamic behavior, yet the actual mechanism is still poorly understood. Here, we define a novel structural feature of biological networks, termed ‘regulation entropy’, to quantitatively assess the influence of network topology on the robustness of the systems. Using the cell-cycle control networks of the budding yeast (Saccharomyces cerevisiae) and the fission yeast (Schizosaccharomyces pombe) as examples, we first demonstrate the correlation of this quantity with the dynamic stability of biological control networks, and then we establish a significant association between this quantity and the structural stability of the networks. And we further substantiate the generality of this approach with a broad spectrum of biological and random networks. We conclude that the regulation entropy is an effective order parameter in evaluating the robustness of biological control networks. Our work suggests a novel connection between the topological feature and the dynamic property of biological regulatory networks

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals

    Get PDF
    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders
    • …
    corecore