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Mitochondrial calcium uniporter Mcu controls
excitotoxicity and is transcriptionally repressed
by neuroprotective nuclear calcium signals
Jing Qiu1,*, Yan-Wei Tan2,*, Anna M. Hagenston2, Marc-Andre Martel1, Niclas Kneisel2, Paul A. Skehel1,

David J.A. Wyllie1, Hilmar Bading2 & Giles E. Hardingham1

The recent identification of the mitochondrial Ca2þ uniporter gene (Mcu/Ccdc109a) has

enabled us to address its role, and that of mitochondrial Ca2þ uptake, in neuronal excito-

toxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and

increases mitochondrial Ca2þ levels following NMDA receptor activation, leading to

increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of

endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca2þ ,

resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu

is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that

limits mitochondrial Ca2þ overload when cytoplasmic Ca2þ levels are high. Specifically,

synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca2þ

and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-

induced mitochondrial Ca2þ uptake and preventing excitotoxic death. This establishes

Mcu and the pathways regulating its expression as important determinants of excitotoxicity,

which may represent therapeutic targets for excitotoxic disorders.
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F
or B50 years, it has been known that mitochondria are able
to take up Ca2þ , achieved through the action of a
membrane potential-driven carrier named the mitochon-

drial calcium uniporter (Mcu)1,2. The neurotoxic potential of the
excitatory neurotransmitter glutamate has been appreciated for a
similarly long time3. Glutamate excitotoxicity was found to be
due to excessive Ca2þ influx through the NMDA subtype of
glutamate receptor, and is implicated in promoting neuronal
death and dysfunction in a variety of acute and chronic
neurological disorders including stroke, traumatic brain injury
and Huntington’s disease3–6.

Many important studies into the responses of mitochondria to
NMDA receptor (NMDAR) activity suggest that mitochondrial
Ca2þ uptake by the uniporter has a role in excitotoxicity7–9.
Inappropriate levels of mitochondrial Ca2þ uptake, in concert
with nitric oxide production and activation of poly(ADP-ribose)
polymerase-1 (PARP-1), lead to loss of mitochondrial membrane
potential, which in turn energetically compromises the neuron
and may lead to ROS generation7–11. However, a definitive
answer to the question of whether mitochondrial Ca2þ uptake
mediates excitotoxicity has been lacking because the molecular
identity of the Mcu was not known. Early attempts to interfere
with mitochondrial Ca2þ uptake in neurons indirectly
involved the use of protonophores in order to depolarize the
mitochondria (the membrane potential is essential for uniporter
activity)12. However, this intervention can dramatically
impact the cell’s bioenergetics as well as potentially triggering
changes to the plasma membrane potential7. Moreover, the
protective effects of prior mitochondrial depolarization are
controversial13. The use of a cocktail of mitochondrial toxins
to dissipate the mitochondrial membrane potential, while
preventing ATP depletion, has also been employed to
indirectly prevent mitochondrial Ca2þ uptake, with protective
consequences14.

Pharmacological agents based on the hexavalent cation
ruthenium red have also been utilized. Ruthenium red itself is
able to selectively block the uniporter in isolated mitochondria,
but has non-selective effects on certain ion channels in intact
cells and is unable to cross the plasma membrane of many cell
types15,16. The derivative Ru360 has been proposed to be
more selective and cell-permeant (although there remain some
doubts in these areas15–17). Effects of Ru360 on glutamate-
induced mitochondrial depolarization have been observed11,
although investigations have focussed on early events, as it is
unstable in aqueous solutions (it quickly becomes oxidized).
Ru360 is of limited use for long-term experiments needed
to assess the role of mitochondrial Ca2þ uptake in excitotoxic
cell death.

In two recent papers, the gene product encoding the uniporter
channel (Mcu) was identified as the ubiquitously expressed gene
previously known as Ccdc109a18,19, which acts in concert with
regulatory proteins such as Micu1 and Mcur1 to mediate
potential-driven mitochondrial Ca2þ uptake20,21. This finding
now allows selective approaches involving exogenous Mcu
expression and knockdown to be employed to determine the
role of mitochondrial Ca2þ uptake in all aspects of cellular
physiology and pathology.

Here we have manipulated Mcu expression in order to directly
investigate the long-standing issue of a role for mitochondrial
Ca2þ uptake in excitotoxicity. Overexpression and knockdown of
Mcu reveals that it has an important role in mitochondrial Ca2þ

uptake following NMDAR activation, as well as in subsequent cell
death. Furthermore, we find that the Mcu gene is subject to
dynamic regulation: it is transcriptionally repressed by neuro-
protective nuclear Ca2þ signals via a mechanism involving
induction of the transcriptional regulator Npas4.

Results
Mcu expression promotes neuronal mitochondrial Ca2þ

uptake. Mcu is a ubiquitously expressed gene19 (although absent
in yeast2) and we confirmed expression of Mcu in mouse cortical
and hippocampal neurons: western analysis of whole-cell lysates
using a previously validated anti-Mcu antibody18 revealed a band
of expected size that was enriched in neurons over-expressing
Mcu (Fig. 1a, Supplementary Fig. S1a). We employed
immunofluorescence and biochemical fractionation approaches
to show that Mcu fused to the fluorescent proteins eGFP or
tDimer localized to neuronal mitochondria, consistent with its
known subcellular distribution (Fig. 1b, Supplementary Fig. S1b
and data not shown). Our overarching aim was to investigate the
effect of manipulating Mcu expression on responses of forebrain
neurons to NMDA treatment, focusing on mitochondrial and
cytoplasmic Ca2þ increases, mitochondrial depolarization, and
cell death.

Throughout the study, we present data using two complemen-
tary approaches: (a) Liposome-mediated transfection of an Mcu
expression vector or Mcu-directed siRNA in mouse cortical
neurons, and (b) Recombinant adeno-associated virus (rAAV)-
mediated transduction of expression vectors encoding Mcu
(tagged with GFP or tDimer) or Mcu-directed shRNA in mouse
hippocampal neurons. The reason for the liposome-mediated
transfection approach was to achieve low efficiency, enabling a
direct comparison between transfected and juxtaposed untrans-
fected cells, while the viral transduction technique was chosen for
high efficiency of infection (80–90%), which facilitates ease of
data analysis, particularly cell death. The two neuronal types used
served to broaden the applicability of our findings.

We first studied the effect of Mcu overexpression on NMDAR-
dependent increases in mitochondrial Ca2þ , loss of mitochon-
drial membrane potential and cell death. In all Ca2þ imaging
experiments we performed experiments with control and ’treated’
conditions using sister cultures interleaved on the same day to
control for any culture-to-culture variation in NMDA-induced
Ca2þ influx. Thus, the only ’control’ data shown in any
particular figure are those data collected on the same day on
the same culture as when the ‘treated condition’ data (for
example, Mcu overexpression) were collected. As an important
additional control, we verified that Mcu overexpression did not
have any effect on NMDA-evoked whole-cell currents (Fig. 1c).

Rhodamine-based Ca2þ indicators are a useful tool for
measuring mitochondrial Ca2þ 22,23, as they partition
preferentially into polarized mitochondria due to their positive
charge, and responses of transfected and juxtaposed
untransfected cells can be analyzed. Neurons loaded with
Rhod-2 showed a punctate distribution of the indicator that
closely resembled that obtained with mitotracker red23 and the
pattern was abolished by the mitochondrial uncoupler FCCP
(Supplementary Fig. S1c), confirming a predominant
mitochondrial localization of the dye. Using Rhod-2 imaging,
we found that Mcu over-expressing neurons (co-transfected with
an eGFP marker for identification) exhibited a larger NMDA-
induced increase in [Ca2þ ]mit, compared with surrounding
untransfected neurons (Supplementary Fig. S1d,e). In control
experiments, neurons transfected with control plasmid (�-globin)
responded no differently than surrounding untransfected neurons
(Supplementary Fig. S1d,e).

Although Rhod-2 imaging is well-suited for comparing the
responses of adjacent transfected versus untransfected cells, its
localization to mitochondria is not completely clear-cut: some
cytoplasmic localization is unavoidable, potentially leading to an
underestimation of the effects on mitochondrial Ca2þ . We
therefore complemented our Rhod-2 imaging studies with
those involving a genetically encoded, mitochondrially targeted
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Figure 1 | Overexpression of Mcu promotes uptake of Ca2þ into mitochondria following NMDA receptor activation. (a) Western blot of extracts from

control neurons or neurons nucleofected with an Mcu-encoding plasmid. (b) Confocal image of a Mito-dsRed and GFP-Mcu co-expressing neuron. Scale

bar¼ 15 mm. (c) NMDA (150mM)-evoked whole-cell currents measured in control- and Mcu-expressing neurons (co-expressing GFP for identification)

(mean±s.e.m., n¼ 7). (d) Confirmation that GCaMP2-mt is localized to mitochondria. Scale bar¼ 15mm. (e–g) Mcu overexpression boosts mitochondrial

Ca2þ uptake assayed using GCaMP2-mt. Neurons were transfected with vectors encoding GCaMP2-mt plus either Mcu or control (�-globin). GCaMP2-mt

fluorescence was measured before and during exposure to NMDA (20mM). (e,f) show example traces from single experiments involving control

(e) or Mcu (f) over-expressing neurons. For each experiment, the mean value of all cells within the field was calculated (line in bold shown) and the

average pre- and post- stimulation level calculated (normalized to the maximal ionomycin-induced signal). 1G shows quantitation of experiments

(mean±s.e.m.). *Po0.05 (unpaired two-tailed t-test, Con: 45 cells, n¼ 6; Mcu: 48 cells, n¼6). (h–j) rAAV-mediated expression of Mcu–tDimer boosts

mitochondrial Ca2þ uptake assayed using 4mtD3cpv. Hippocampal neurons were infected with rAAVs containing vectors encoding 4mtD3cpv±rAAV–

Mcu–tDimer. 4mtD3cpv FRET ratios were measured before and during NMDA exposure (10 mM) 200–250 s following NMDA application. 1H and 1I show

example traces from single experiments involving control (h) or rAAV–Mcu–tDimer (i) infected neurons. (j) shows quantitation (mean±s.e.m.).

In all cases, [Ca2þ ] levels obtained using 4mtD3cpv were normalized to the mean NMDA-induced [Ca2þ ] in control-transfected neurons measured on

that precise day of imaging. *Po0.05 (unpaired two-tailed t-test. Con: 204 cells from n¼ 15 experiments; Mcu–tDimer: 100 cells from n¼ 12 experiments).
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Ca2þ indicator, GCaMP2-mt24 (Fig. 1d). The GCaMP2-mt
signal obtained in resting control neurons was B30% of the
maximum signal obtained by ionomycin treatment and the
indicator was found to have a Fmin (obtained with ionomycin in
zero Ca2þ medium) that was barely detectable over background
(data not shown). Using this technique, we also found that Mcu
overexpression strongly increased both basal [Ca2þ ]mit and
NMDA-induced increases in [Ca2þ ]mit, compared with control-
transfected neurons treated in parallel experiments (Fig. 1e–g).

We next studied the effect of Mcu overexpression on NMDA-
induced mitochondrial Ca2þ uptake using an rAAV-based
approach. We co-infected neurons with an rAAV containing an
expression cassette for Mcu (tagged with tDimer for identifica-
tion) and an rAAV containing an expression cassette for the
FRET-based mitochondrial Ca2þ indicator 4mtD3cpv25. The
effect of Mcu overexpression was compared with parallel
experiments in which the neurons were infected with only
rAAV–4mtD3cpv. The rAAV-mediated infection resulted in high
efficiency (80–90%) expression of Mcu–tDimer in mouse
hippocampal neurons (data not shown). Compared with
parallel experiments performed on control neurons Mcu–
tDimer overexpression led to enhanced elevation of [Ca2þ ]mit,
following NMDAR activation (Fig. 1h–j). We have thus shown
using independent methods of gene transfer and imaging, that
Mcu overexpression in neurons leads to enhanced mitochondrial
Ca2þ uptake following activation of NMDARs.

Mcu promotes NMDAR-dependent mitochondrial
depolarization. A reduction of mitochondrial membrane
potential (Cm) is one of the earliest observable events in response
to excitotoxic insults, and mitochondrial Ca2þ uptake is thought
to be a key factor in this process11,26,27. We therefore studied the
effect of manipulating Mcu expression on NMDA-induced
Cm loss, assayed using the indicator rhodamine-12310,28. We
found that Mcu overexpressing neurons (co-transfected with
an expression vector for mCherry for identification of the
manipulated cells) exhibited a greater percentage change in
rhodamine-123 signal following NMDA treatment, compared
with surrounding untransfected neurons, indicative of a greater
loss of Cm (Fig. 2b, see 2a for an example experiment). In control
experiments, neurons transfected with control plasmid
(expression vector for �-globin) responded no differently than
surrounding untransfected neurons (Fig. 2b). Thus,
overexpression of Mcu exacerbates NMDA-induced loss of Cm,
consistent with its effect on mitochondrial Ca2þ uptake.

Mcu enhances vulnerability to NMDAR-dependent
excitotoxicity. We next investigated the effect of manipulating
Mcu expression on the vulnerability of neurons to excitotoxic
insults. Pictures of cortical neurons transfected (Lipofectamine)
with control or Mcu-encoding vectors plus an eGFP marker were
taken before and 24 h after a 1-h exposure to an excitotoxic dose
of NMDA, and their viability scored. We found that Mcu over-
expression increased the level of basal toxicity in neurons
(Fig. 3a). In addition, levels of neuronal death were higher in
NMDA-treated neurons over-expressing Mcu compared with
control-transfected neurons (Fig. 3a,b). Similar results were
obtained using hippocampal neurons infected with rAAV–Mcu–
GFP: the expression of Mcu–GFP led to increased basal cell death
rates in neurons and elevated levels of NMDA-induced cell death
(Fig. 3c,d). For both cortical and hippocampal neurons, we
additionally analyzed the above data to calculate whether
Mcu overexpression made neurons more vulnerable to NMDA
treatment, taking into account the increased basal death (see
Methods). This revealed that Mcu makes neurons significantly

more vulnerable to 20 and 30 mM NMDA in cortical neurons and
more vulnerable to all doses of NMDA in hippocampal neurons
(Supplementary Fig. S2a,b).

Mcu knockdown impairs Ca2þ
mit and is neuroprotective. We

then performed loss-of-function experiments to investigate the
effect of interfering with endogenous Mcu expression on
NMDAR-dependent increases in mitochondrial Ca2þ , loss of
mitochondrial membrane potential and cell death. Two inde-
pendent approaches were taken: liposome-mediated transfection
of Mcu-targeted pre-made siRNA, and rAAV-mediated expres-
sion of Mcu-directed small hairpin RNA (shRNA). The efficacy of
the pre-made siRNA was investigated using a high-efficiency
transfection approach (nucleofection), which revealed a partial
(50%) knockdown at protein and mRNA levels (Fig. 4a,b,
Supplementary Fig. S1a) and no effect on NMDA-evoked whole-
cell currents (Fig. 4c). Given the nucleofection efficiency is never
greater than 70–80%, the 50% knockdown reflects a 450%
knockdown in transfected cells. We found that neurons trans-
fected with Mcu-directed siRNA exhibited a smaller NMDA-
induced increase in [Ca2þ ]mit, assayed either using the Rhod-2
indicator and comparing the results to surrounding untransfected
neurons (Supplementary Fig. S3a,b), or using GCaMP2-mt and
comparing the results to control-transfected neurons (Fig. 4d-f).
Neurons transfected with Mcu-directed siRNA also exhibited a
smaller loss of Cm than surrounding cells, while control-
transfected neurons did not show differences compared with
surrounding cells, (Fig. 4g,h). We then investigated whether Mcu
knockdown influenced NMDA-induced excitotoxicity, and found
this indeed to be the case: levels of NMDA-induced death were
lower than in control-transfected cells (Fig. 4i,j). Moreover,
we confirmed that the mitochondrial membrane potential of
surviving cells (24 h after the NMDA insult) was intact and no
different from control cells (Supplementary Fig. S3c). We also
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confirmed that the resting cytoplasmic Ca2þ concentration of
surviving cells was low and no different from that of control cells
(Supplementary Fig. S3d). This showed that protection due to
Mcu knockdown is (as expected) associated with the long-term
preservation of mitochondrial capacity and Ca2þ homeostasis.
Additionally, we found that the effect of Mcu-directed siRNA on
neuronal survival was abolished by overexpression of a specially
engineered siRNA-resistant form of Mcu, confirming the speci-
ficity of the effect (Supplementary Fig. S3e,f). Using the rAAV-
mediated expression of Mcu-directed shRNAs, we achieved a
490% knockdown of Mcu (Fig. 5a,b, Supplementary Fig. S1aii),
which when compared with control neurons (infected with an
rAAV containing an expression cassette for a scrambled control
shRNA) led to a reduction in NMDA-induced [Ca2þ ]mit

increases (Fig. 5c,d,e), a reduction in NMDA-induced mito-
chondrial membrane depolarization (Fig. 5f), and protection
against NMDA-induced excitotoxicity (Fig. 5g,h).

Mcu is transcriptionally repressed by synaptic activity. It has
long been known that episodes of synaptic activity can promote
neuroprotection against excitotoxic insults23,29–31. While
multiple parallel mechanisms are likely to mediate this effect,
the key role of Mcu-driven mitochondrial Ca2þ uptake in
excitotoxic cell death led us to investigate whether
neuroprotective electrical activity influences Mcu-mediated

effects. Burst activity was initiated in cortical neurons by
treatment with the GABAA receptor antagonist bicuculline in
the presence of the weak Kþ channel blocker 4-aminopyridine
(BiC/4-AP), as employed previously32,33. Consistent with
previous studies, we found that BiC/4-AP pre-treatment,
followed by wash-out, rendered neurons resistant to
subsequently applied excitotoxic doses of NMDA (Fig. 6a).
Strikingly, we also observed that the same stimulation resulted in
the downregulation of Mcu expression at both protein and
mRNA levels in cortical and hippocampal neurons (Fig. 6b,c).

This raises the exciting possibility that neuroprotective synaptic
activity may actually influence the degree of mitochondrial Ca2þ

uptake following subsequent NMDA treatment. Indeed, this was
found to be the case: mitochondrial Ca2þ uptake during NMDA
treatment was substantially reduced in BiC/4-AP pre-treated
cortical neurons (Fig. 6d) and BiC pre-treated hippocampal
neurons (Fig. 6e). Importantly, BiC/4-AP pre-treatment
of neurons did not reduce NMDAR whole-cell currents
(Supplementary Fig. S4a) and moreover, Ca2þ imaging using a
non-mitochondrially targeted, cytoplasmic GCaMP2 revealed
that basal and NMDA-induced cytoplasmic Ca2þ levels were
not reduced by BiC/4-AP pre-treatment (Supplementary
Fig. S4b). In fact, they were in both cases slightly larger,
potentially a consequence of reduced mitochondrial Ca2þ

uptake. Thus, compared with control, neurons that had recently
experienced strong synaptic activity showed a striking difference
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in the relationship between cytoplasmic Ca2þ increases and
subsequent mitochondrial Ca2þ uptake. Collectively these data
support a model whereby prior firing activity suppresses toxic

mitochondrial Ca2þ uptake following cytoplasmic Ca2þ

increases, at least in part via the repression of Mcu expression.
Of note, we found that forced expression of Mcu promotes
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increased vulnerability to excitotoxicity even in synaptically active
neurons (Fig. 6f). In other words, Mcu overexpression increases
the level of neuronal death to a point that is that is beyond the
protective effects of synaptic activity.

Mcu is repressed by nuclear Ca2þ -dependent CaM kinases.
Finally, we investigated the mechanism by which synaptic activity
represses Mcu expression. The observed lowering of Mcu mRNA
in response to synaptic activity was suggestive of either tran-
scriptional repression or reduced mRNA stability (that is, elevated
degradation rate). We studied mRNA stability using the standard
method of inhibiting transcription with Actinomycin D and

harvesting RNA at multiple time points thereafter. By comparing
the level of Mcu mRNA with a relatively stable mRNA (18S), one
can gain a measure of mRNA degradation, and assess the influ-
ence of prior synaptic activity on this stability. An episode of
prior synaptic activity had no significant difference in the decay
kinetics of Mcu mRNA levels (Supplementary Fig. S5). This result
strongly suggests that repression of Mcu mRNA levels is due to
the repression of transcription.

We then investigated the mechanism of this transcriptional
repression. We found that activity-dependent repression of Mcu
was blocked by cycloheximide, indicative that de novo gene
expression is required (that is, Mcu regulation is not ‘immediate-
early’ in nature, Fig. 7a). Moreover, repression of Mcu by synaptic
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activity was blocked both by CaM kinase inhibition with KN-62
(Fig. 7b) and also by the nuclear-localized Ca2þ /Calmodulin
inhibitor CaMBP433–35 (Fig. 7c). This suggested a mechanism of
Mcu repression that involved the nuclear Ca2þ and CaM kinase-
dependent induction of a gene product that in turn (directly or
indirectly) represses Mcu expression.

Activity-dependent Mcu repression requires Npas4 induction.
Our laboratories have previously described the neuroprotective
effects of nuclear Ca2þ signaling33 and also discovered a series of
nuclear Ca2þ -induced neuroprotective genes, five of which were
found to inhibit NMDA-induced mitochondrial depolarization35.
We therefore screened these genes for an ability to repress Mcu
expression and found that viral overexpression of Npas4 was
sufficient to repress Mcu expression (Fig. 7d). Npas4 is a
transcription factor that can promote negative gene regulation in
neurons36, and it is an immediate-early gene: its induction by
synaptic activity was not reduced by protein synthesis inhibition
(cycloheximide treatment, Fig. 7e). Indeed, superinduction in the
presence of cycloheximide was observed as is common with
immediate-early genes. Moreover, Npas4 induction by synaptic

activity was strongly inhibited by both KN-62 and CaMBP4
(Fig. 7e,f), the same interventions that prevented Mcu repression
(Fig. 7b,c). To directly test whether Npas4 induction was required
for activity-dependent Mcu repression, we performed shRNA-
mediated knockdown of Npas4 (Fig. 7g) and found that this
inhibited activity-dependent repression of Mcu (Fig. 7h). Thus,
activity-dependent Mcu repression involves the nuclear Ca2þ

and CaM kinase-dependent induction of Npas4, which in turn
mediates the transcriptional repression of Mcu. These data
establish Npas4 as a potentially central regulator of Mcu activity
in neurons.

Discussion
In this study, we used gain- and loss-of-function experiments to
demonstrate the central role of the Mcu gene product in the
control of mitochondrial Ca2þ uptake in neurons following an
excitotoxic insult. Moreover, we established that Mcu is an
important mediator of death signal-induced loss of mitochondrial
membrane potential and relays NMDA receptor stimulation to
excitotoxic cell loss. Intriguingly, we also find that Mcu
expression and mitochondrial Ca2þ uptake are subject to
dynamic regulation by neuroprotective firing activity.
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Several key pro-death pathways are activated in parallel in
response to an excitotoxic insult, including nitric oxide and ROS
production, oxidative stress, JNK and PARP-1 activation, and
CREB shut-off3,37–40. Their relative importance may depend on
the cell type, developmental stage, and severity of insult.
Nevertheless, in most scenarios, it is likely that more than one
pathway is important and that pathways can interact with each
other. Future studies on Mcu-driven Ca2þ uptake will tell us
what role this process has in several key pro-death cascades.
For example, mitochondrial Ca2þ uptake is implicated in the
activation of PARP-1 via mitochondrial ROS generation,
which combine with NO to trigger ONOO� -mediated DNA
damage, the trigger for PARP-1 activation11,41,42. Moreover,

mitochondrial Ca2þ uptake and ROS production have also
been implicated in JNK activation43. Another important issue
surrounds the contribution of factors other than mitochondrial
Ca2þ uptake in mitochondrial membrane depolarization.
The coupling of the GluN2B C-terminal domain to down-
stream cell death pathways, including nitric oxide production,
contributes to excitotoxicity3,44–46, and excitotoxic mitochondrial
depolarization via Ca2þ uptake has been reported to involve
nitric oxide10,47. Nitric oxide sensitizes mitochondria to
Ca2þ -dependent depolarization10, raising the possibility that it
affects mitochondrial energy metabolism, Mcu activity itself, or
even efflux via the mitochondrial Naþ /Ca2þ exchanger. PARP-1
has also been shown to contribute to excitotoxic mitochondrial
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scrambled shRNA), and the effect of this on BiC/4-AP induction of Npas4 mRNA (graph) or protein (inset) measured, *Po0.05 (ANOVA, Bonferroni

post hoc, n¼ 5). Mean±s.e.m. shown. (h) As for 7 g, except that Mcu expression was measured. *Po0.05 (ANOVA, Bonferroni post hoc, n¼ 5).

Mean±s.e.m. shown.
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depolarization, likely via depletion of NADH levels11. Despite the
existence of multiple mechanisms leading to excitotoxicity, it is
thus apparent that there is crosstalk between pathways and that
mitochondrial dysfunction is a convergent hub for some
and an upstream effector for others. In seeking to minimize
neuronal death and dysfunction in excitotoxic disorders such as
stroke, targeting multiple sites of control may be optimal.
One can envisage that targeting upstream (big effect,
short therapeutic window) as well as downstream (smaller
effect, longer window) events could be more effective than
any one strategy. Future studies will help to illuminate and clarify
these issues.

It will also be of interest to determine whether and how
mitochondrial Ca2þ uptake contributes to the differential
effects of synaptic versus extrasynaptic NMDAR activity28,38.
Extrasynaptic NMDAR activity is particularly well-coupled to
mitochondrial depolarization28, and Ca2þ influx triggered by
bath activation of NMDARs is more strongly coupled to
mitochondrial Ca2þ uptake than influx through other routes27.
It is tempting to speculate that physical proximity of
extrasynaptic NMDARs to mitochondria may contribute to this.
Given the relatively low affinity and huge Ca2þ -carrying capacity
of the uniporter1 (half-saturation reached at 20 mM Ca2þ ),
Ca2þ uptake may be substantially enhanced if mitochondria are
positioned extremely near the site of Ca2þ entry where local
Ca2þ levels are high. Synaptic NMDARs may be somewhat
shielded from close proximity to mitochondria by the post-
synaptic density, and more significantly by the fact that dendritic
spines rarely contain mitochondria48. It will also be important to
determine whether other mitochondrial Ca2þ transporters such
as Letm1 or uncoupling proteins contribute in any way in
neurons49,50, and which Mcu regulatory proteins (for example,
Micu1/2 and Mcur1) are important. We occasionally observed
biphasic kinetics in the increase of [Ca2þ ]mit (for example, see
Fig. 1i), potentially indicating functionally different uptake
mechanisms.

Our findings suggest that pharmacological modulation of Mcu
offers a realistic therapeutic target for excitotoxic injury, as
ischemia-induced excitotoxicity is likely to develop over a
relatively long timescale. Interference with early events in the
excitotoxic cascade can yield protective outcomes, such as those
employing NMDAR antagonists, and PSD-95 and JNK inhibi-
tors3,37,43,46,51. Now that the molecular machinery of the Mcu has
been identified18,19, and its role in excitotoxicity established (this
study), screens for small molecules that inhibit Mcu activity may
lead to novel neuroprotective compounds. Of course, the
appropriateness of the Mcu as a therapeutic target needs
to be assessed in the light of all its physiological role(s).
Evidence supports the notion that mitochondrial Ca2þ controls
mitochondrial energy metabolism, including in neurons52,53. The
impact of interfering with Mcu activity on these processes awaits
further investigation, although we note from the current study
that Mcu knockdown has no adverse effects on basal viability.

Our observations that Mcu is subject to transcriptional
repression by neuroprotective Ca2þ signals may reflect an
important facet of Mcu’s function in the cell. As Mcu-mediated
mitochondrial Ca2þ overload contributes to mitochondrial
dysfunction and neuronal death in response to excitotoxic insults,
repression of Mcu expression by Ca2þ signals may represent a
potentially important feedback mechanism acting to prevent
mitochondrial Ca2þ overload, (potentially in concert with other
mechanisms54). It is tempting to speculate that this mechanism
enables a cell to tune its Mcu activity to reflect cytoplasmic
Ca2þ levels, and that Mcu transcriptional repression is an
important factor in Ca2þ -dependent tolerance/preconditioning
mechanisms.

Protection against excitotoxic insults by Ca2þ -dependent
transcriptional changes has centered mainly on the Ca2þ

responsive transcription factors involved. Induction of CREB-
mediated transcription and inhibition of FOXO-mediated gene
expression have been shown to contribute to protection against
excitotoxic insults by neuroprotective Ca2þ signals29,31. Our
observation that repression of Mcu expression underlies an
important part of the anti-excitotoxic effects of sub-toxic Ca2þ

signals demonstrates that a central effector of excitotoxicity is
under direct control by neuroprotective pathways. Furthermore,
we have demonstrated that this repression is a delayed
response to the immediate-early induction of Npas4, although
whether Npas4 is acting directly on the Mcu promoter in an
inhibitory capacity or acting indirectly (for example, by inducing
the expression of a repressor) awaits further investigation.
Given that the MCU gene is also subject to Ca2þ -mediated
transcriptional repression in human ESC-derived neurons
(Qiu and Hardingham, unpublished observations), a search for
phylogenetically conserved elements within the Mcu promoter
may yield the sequences responsible for mediating Ca2þ

sensitivity.
To conclude, we have established Mcu both as an effector of

excitotoxic cell death and a target of neuroprotective signals.
Exploiting these facts may lead to new interventions aimed at
ameliorating neuronal dysfunction and death in disorders
associated with aberrant NMDAR activity.

Methods
Neuronal culture. Hippocampal and cortical neurons from newborn C57Bl/6
mice (sex not determined) were cultured and maintained as described pre-
viously33,35. Neurons were cultured in Neurobasal media (Invitrogen,
Gaithersburg, MD, USA) containing 1% rat serum and B27 (Invitrogen), and
penicillin/streptomycin. Experiments were performed after a culturing period of
10–13 days during which cultured neurons develop a rich network of processes,
express functional NMDA-type and AMPA/kainate-type glutamate receptors, and
form synaptic contacts.

Transfection and nucleofection. Neurons were transfected in trophic transfection
medium55 with plasmids (2mg ml� 1 total) and/or siRNA (100 nM) using
Lipofectamine 2000. Nucleofection was performed using the Amaxa rat Neuron
Nucleofector Kit (Lonza). See Supplementary Methods for further details and
siRNA target sequences.

Western blotting and Subcellular fractionation. Gel electrophoresis and western
blotting were performed using the Xcell Surelock system (Invitrogen) using precast
gradient gels (4–20%) as described45. The following antibodies were used:
Ccdc109a (Sigma, 1:500), �-actin (Abcam, 1:2,000), a-Tubulin (Sigma, 1:400,000),
anti PDH-E1-alpha (Abcam, 1:1,500); anti C-V-alpha (Abcam, 1:1,500); anti Erk
1/2 (NEB, 1:5,000). For visualization of western blots, HRP-based secondary
antibodies were used followed by chemiluminescent detection on Kodak X-Omat
film. Western blots were analyzed by digitally scanning the blots, followed by
densitometric analysis (ImageJ). For figure preparation of western blots, linear
adjustment of brightness/contrast was applied (Photoshop) equally across the
image. See Supplementary Methods for details of subcellular fractionation.

Plasmids and virus generation. The vector containing the mouse CaMKIIa
promoter used to construct and package rAAV has been described previously56.
For knockdown using shRNA, we used a rAAV vector containing the U6 promoter
driving shRNA expression and that also contained a CaMKII promoter driving
mCherry expression (to identify infected neurons). See Supplementary Methods for
details of cloning and sequences used to generate rAAV vectors encoding Mcu,
4mtD3cpv and shRNA targeting Mcu and Npas4.

Neurons were infected with 1011 rAAV particles per ml at DIV 4. Infection
efficiencies were determined at DIV 10 by analyzing the fluorescence of eGFP or
mCherry; they ranged from 80 to 90% of the viable neurons. rAAV expression
vectors for Npas4, CaMBP4 and mCherry have been described previously35,56.
Mcu-GFP was a gift from Vamsi Mootha18, pCAGGS-GCaMP2 was a gift from
Karel Svoboda57; GCaMP2-mt was a gift from Xianhua Wang24, Mt-cameleon-
pcDNA3 (containing 4mtD3cpv cDNA) was a gift from Roger Tsien25.

Electrophysiological recording and analysis. NMDA-evoked whole-cell steady-
state currents (normalized to cell capacitance) were measured 48 h after
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transfection as described45. NMDA (150mM) was applied for 30 s, repeated twice
for each cell. Data were filtered at 1 kHz and digitized at 5 kHz for subsequent off-
line analysis.

Mitochondrial Ca2þ imaging. In all Ca2þ imaging experiments, we performed
experiments with control and ’treated’ conditions using sister cultures interleaved
on the same day to control for any culture-to-culture variation in NMDA-induced
Ca2þ influx. Thus, the only ’control’ data shown in any particular figure are those
data collected on the same day on the same culture as when the ’treated condition’
data (for example, Mcu overexpression) were collected. Several imaging approaches
were used: (a) Rhod-2 imaging: this was performed as described23 using a Leica
AF6000 LX imaging system, with a DFC350 FX digital camera. Neurons loaded
with Rhod-2 showed a punctate distribution of the indicator that very closely
resembled that obtained with mitotracker red (data not shown) and the pattern was
abolished by the mitochondrial uncoupler FCCP (Supplementary Fig. S1c),
confirming the mitochondrial localization of the dye. Transfected cells were
identified by co-transfecting eGFP expression plasmid. The NMDA-induced
increase in Rhod-2 signal (DF/F, ex 546±6 nm; em 600±20 nm) of each
transfected cell was compared to that observed in surrounding untransfected cells
in a 100 mm radius and subsequently expressed as a percentage of that observed in
those untransfected cells. (b) GCaMP2-mt imaging: neurons were transfected with
GCaMP2-mt-encoding vector, the fluorescence signal of which was detected using
a standard GFP filter set (ex 480±20; em 527±15). NMDA-induced changes in
mitochondrial Ca2þ were expressed as (F� Fmin)/(Fmax� F) according to the
equation [Ca2þ ]¼Kd� (F� Fmin)/(Fmax� F). Fmax was obtained when cells were
treated with the cell-permeable Ca2þ ionophore ionomycin which both inserts
into the plasma membrane and passes into the cell, inserting into mitochondrial
membranes58, leading to saturation of the indicator when in regular medium
(2 mM Ca2þ ). Fmin was obtained under the same conditions except in zero Ca2þ

medium. The linear relationship between [Ca2þ ] and (F� Fmin)/(Fmax� F) was
confirmed by calibrating the indicator as expressed in neurons, exposing them to
ionomycin in the presence of sequentially different solutions of precise [Ca2þ ],
obtained by mixing K2EGTA and CaEGTA solutions (Calcium Calibration Buffer
Kit, Invitrogen) at different ratios (data not shown). (c) 4mtD3cpv imaging was
performed as described25. Fluorescence images were acquired at 2 Hz using a
cooled CCD camera (iXon, Andor) through a � 20 water-immersion objective
(XLMPlanFluor, Olympus) on an upright microscope (BX51W1, Olympus).
Fluorescence excitation (CFP 430±12; YFP 500±10) was provided by a xenon arc
lamp in combination with an excitation filter wheel (cell^R, Olympus). CFP
(470±12) and YFP (535±15) emission wavelengths were separated and filtered
using a DualView beam splitter (MAG Biosystems). Data were collected using
proprietary software (cell^R, Olympus), and analyzed using ImageJ and IgorPro
(WaveMetrics). When appropriate, only cells co-expressing both a Ca2þ indicator
and an mCherry or tDimer tag were chosen for analysis. Ca2þ concentration
changes were quantified using the crosstalk- and bleaching-corrected FRET ratio25.
Mitochondrial Ca2þ responses to NMDA were expressed as (%Rfret/
(DRmax�%Rfret))1/n according to the equation [Ca2þ ]¼K0d� (%Rfret/
(DRmax�%Rfret))1/n25, where %Rfret represents the percent of the maximum
response obtained in SGG medium containing 10 mM ionomycin and 10 mM
Ca2þ . The values for DRmax and n (105.3% and 0.74, respectively) were derived
from published calibrations25. The linear relationship between [Ca2þ ] and (%Rfret/
(DRmax�%Rfret))1/n was confirmed in neurons exposed to ionomycin in the
presence of sequentially different solutions of precise [Ca2þ ], obtained by mixing
K2EGTA and CaEGTA solutions (Calcium Calibration Buffer Kit, Invitrogen) at
different ratios (data not shown). Control values for mitochondrial [Ca2þ ]
obtained using 4mtD3cpv were subject to some culture-to-culture variation, which
is likely to be due to the fact that it is operating closer to it’s maximum than
GCaMP2-mt is. As a result of this, we have normalized all 4mtD3cpv [Ca2þ ] data
to the average NMDA-induced [Ca2þ ] obtained in control cells on that day of
recording. This allows us to directly assess the effect of Mcu expression, Mcu
knockdown, or BiC pre-treatment on NMDA-induced mitochondrial [Ca2þ ],
expressed as a percentage of the NMDA-induced mitochondrial [Ca2þ ] level
obtained in that exact day of recording.

Mitochondrial membrane potential imaging. Mitochondrial membrane potential
was analyzed as described10,28 using Rh123 (Molecular Probes). Briefly, neurons
were loaded with Rh123 (10 mg ml� 1 or 26 mM) in SGG medium for 10 min
followed by extensive washing with SGG. Rh123 partitions into polarized
mitochondria where it self-quenches at the concentration used. When
mitochondria depolarize, Rh123 leaks out of the mitochondria into the cytoplasm
where it dequenches and fluoresces strongly. Maximum Rh123 signal (ex 480±20;
em 527±15) was obtained by completely eliminating the mitochondrial potential
by exposing the neurons to the mitochondrial uncoupler FCCP (5 mM; Sigma). For
analyzing the effect of transfecting Mcu expression vectors or Mcu-directed siRNA,
transfected cells were identified by co-transfecting mCherry expression plasmid.
The NMDA-induced increase in Rh123 signal of each transfected cell (as a % of the
FCCP-induced level for that cell) was compared with that observed in surrounding
untransfected cells in a 100-mm radius and subsequently expressed as a percentage
of that observed in those untransfected cells. The NMDA-induced increase in

Rh123 signal in Mcu-1 shRNA-infected hippocampal neurons was compared with
that observed in Scr shRNA-infected cultures analyzed in parallel.

Studying transfected neurons after excitotoxic insult. Excitotoxicity experi-
ments performed on Lipofectamine-transfected neurons were performed as
described45,59 (for full details see Supplementary Methods). The induction and
analysis of NMDA-induced neuronal cell death of rAAV-infected neurons were
performed as described60, with slight changes. For full details, see Supplementary
Methods. Also see Supplementary Methods for details of methodology used to
calculate whether Mcu overexpression specifically rendered neurons more
vulnerable to NMDA exposure, taking into account the increased basal death
observed.

Quantitative reverse transcriptase PCR. To determine Mcu silencing by the
pre-made Mcu-directed siRNA, and study activity-dependent Mcu regulation in
cortical neurons, QRT–PCR was performed using an Mx3000P QPCR System as
described45. For further details including primer sequences, see Supplementary
Methods. To determine Mcu silencing by Mcu-directed rAAV–shRNA, and study
activity-dependent Mcu regulation in hippocampal neurons, QRT–PCR was
performed using real-time TaqMan technology with a sequence detection system
model 7300 Real Time PCR System (Applied Biosystems, Foster City, CA, USA).
For further details including primer sequences see Supplementary Methods.

Statistical analysis. Statistical testing involved a two-tailed paired or unpaired
Student’s t-test, as appropriate. For studies employing multiple testing, we used a
one-way ANOVA followed by Bonferroni post hoc test. All data were presented as
mean±s.e.m.
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