15 research outputs found

    All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method

    Get PDF
    In the weighted load balancing problem, the input is an n-vertex bipartite graph between a set of clients and a set of servers, and each client comes with some nonnegative real weight. The output is an assignment that maps each client to one of its adjacent servers, and the load of a server is then the sum of the weights of the clients assigned to it. The goal is to find an assignment that is well-balanced, typically captured by (approximately) minimizing either the ?_?- or ??-norm of the server loads. Generalizing both of these objectives, the all-norm load balancing problem asks for an assignment that approximately minimizes all ?_p-norm objectives for p ? 1, including p = ?, simultaneously. Our main result is a deterministic O(log n)-pass O(1)-approximation semi-streaming algorithm for the all-norm load balancing problem. Prior to our work, only an O(log n)-pass O(log n)-approximation algorithm for the ?_?-norm objective was known in the semi-streaming setting. Our algorithm uses a novel application of the multiplicative weights update method to a mixed covering/packing convex program for the all-norm load balancing problem involving an infinite number of constraints

    Improved Bounds for Distributed Load Balancing

    Get PDF
    In the load balancing problem, the input is an nn-vertex bipartite graph G=(CS,E)G = (C \cup S, E) and a positive weight for each client cCc \in C. The algorithm must assign each client cCc \in C to an adjacent server sSs \in S. The load of a server is then the weighted sum of all the clients assigned to it, and the goal is to compute an assignment that minimizes some function of the server loads, typically either the maximum server load (i.e., the \ell_{\infty}-norm) or the p\ell_p-norm of the server loads. We study load balancing in the distributed setting. There are two existing results in the CONGEST model. Czygrinow et al. [DISC 2012] showed a 2-approximation for unweighted clients with round-complexity O(Δ5)O(\Delta^5), where Δ\Delta is the maximum degree of the input graph. Halld\'orsson et al. [SPAA 2015] showed an O(logn/loglogn)O(\log{n}/\log\log{n})-approximation for unweighted clients and O(log2 ⁣n/loglogn)O(\log^2\!{n}/\log\log{n})-approximation for weighted clients with round-complexity polylog(n)(n). In this paper, we show the first distributed algorithms to compute an O(1)O(1)-approximation to the load balancing problem in polylog(n)(n) rounds. In the CONGEST model, we give an O(1)O(1)-approximation algorithm in polylog(n)(n) rounds for unweighted clients. For weighted clients, the approximation ratio is O(logn)O(\log{n}). In the less constrained LOCAL model, we give an O(1)O(1)-approximation algorithm for weighted clients in polylog(n)(n) rounds. Our approach also has implications for the standard sequential setting in which we obtain the first O(1)O(1)-approximation for this problem that runs in near-linear time. A 2-approximation is already known, but it requires solving a linear program and is hence much slower. Finally, we note that all of our results simultaneously approximate all p\ell_p-norms, including the \ell_{\infty}-norm

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    The Philadelphia Yellow Fever Epidemic of 1793

    No full text
    corecore