36 research outputs found

    Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Get PDF
    A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multimodel mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISSPUCCINI)and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23Wm−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08Wm−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05Wm−2, but which is within the stated range of −0.15 to +0.05Wm−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1Wm−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/)

    Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

    Get PDF
    The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance of the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20% of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. All experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations

    Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations

    Get PDF
    A recent airborne field campaign over the remote western Pacific obtained the first intensive in situ ozone sampling over the warm pool region from oceanic surface to 15-km altitude (near 360-K potential temperature level). The new data set quantifies ozone in the tropical tropopause layer under significant influence of convective outflow. The analysis further reveals a bimodal distribution of free tropospheric ozone mixing ratio. A primary mode, narrowly distributed around 20-ppbv, dominates the troposphere from the surface to 15-km. A secondary mode, broadly distributed with a 60-ppbv modal value, is prominent between 3 and 8-km (320-K to 340-K potential temperature levels). The latter mode occurs as persistent layers of ozone-rich drier air and is characterized by relative humidity under 45%. Possible controlling mechanisms are discussed. These findings provide new insight into the physical interpretation of the >S>-shaped mean ozone profiles in the tropics.Peer Reviewe

    Evolution of anthropogenic and biomass burning emissions of air pollultants at global and regional scales during the 1980-2010 period

    Get PDF
    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned

    Nighttime atmospheric chemistry of iodine

    Get PDF
    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO+HOI→IO+HNO is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260-300K and at a pressure of 1000 hPa to be k.T ) =2.7×10 (300 K/T) cm molecule s. This reaction is included in two atmospheric models, along with the known reaction between I and NO, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I, which results in the enhancement of more than 25% of nighttime ocean emissions of HOI+I and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation.Peer Reviewe

    Wildfire air pollution hazard during the 21st century

    No full text
    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2.5), combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simuations with a chemical transport model. Currently, wildfire PM2.5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2.5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2.5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wild- fire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2.5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.JRC.D.5-Food Securit

    Emission scenarios for a global hydrogen economy and the consequences for global air pollution

    No full text
    Hydrogen is named as possible energy carrier for future energy systems. However, the impact of large-scale hydrogen use on the atmosphere is uncertain. Application of hydrogen in clean fuel cells reduces emissions of air pollutants, but emissions from hydrogen production and leakages of molecular hydrogen could influence atmospheric chemistry. This paper combines a global energy system model and a global atmospheric model to explore the range of impacts of hydrogen on atmospheric chemistry. We found that emissions of molecular hydrogen may range from 0.2 up to 10% (or 25–167 Tg hydrogen/yr) for a global hydrogen energy system. The lower end of this range would in fact be equal to current emissions from fossil fuel combustion. Hydrogen energy use leads to a clear decrease in emissions of carbon monoxide, nitrogen oxides and sulphur dioxide, but large-scale hydrogen production from coal may lead to net increase in emissions of nitrous oxide and volatile organic compound. Compared to a reference scenario, this would lead to positive impacts on surface concentrations of carbon monoxide, nitrogen oxides and ozone. However, if hydrogen leakage would not be minimised it leads to an increase in methane lifetimes and a decrease in stratospheric ozone concentrations
    corecore