101 research outputs found

    Risk Factors for Delayed Viral Suppression on First-Line Antiretroviral Therapy among Persons Living with HIV in Haiti, 2013-2017

    Get PDF
    Studies of viral suppression on first-line antiretroviral therapy (ART) in persons living with human immunodeficiency virus (PLHIV) in Haiti are limited, particularly among PLHIV outside of the Ouest department, where the capital Port-au-Prince is located. This study described the prevalence and risk factors for delayed viral suppression among PLHIV in all geographic departments of Haiti between 2013 and 2017. Individuals who received viral load testing 3 to 12 months after ART initiation were included. Data on demographics and clinical care were obtained from the Haitian Active Longitudinal Tracking of HIV database. Multivariable logistic regression was performed to predict delayed viral suppression, defined as a viral load ≥1000 HIV-1 RNA copies/mL after at least 3 months on ART. Viral load test results were available for 3,368 PLHIV newly-initiated on ART. Prevalence of delayed viral suppression was 40%, which is slightly higher than previous estimates in Haiti. In the multivariable analysis, delayed viral suppression was significantly associated with younger age, receiving of care in the Ouest department, treatment with lamivudine (3TC), zidovudine (AZT), and nevirapine (NVP) combined ART regimen, and CD4 counts below 200 cells/mm3. In conclusion, this study was the first to describe and compare differences in delayed viral suppression among PLHIV by geographic department in Haiti. We identified populations to whom public health interventions, such as more frequent viral load testing, drug resistance testing, and ART adherence counseling should be targeted

    Background risk of breast cancer and the association between physical activity and mammographic density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    Mammographic density and risk of breast cancer according to tumor characteristics and mode of detection: a Spanish population-based case-control study

    Get PDF
    It is not clear whether high mammographic density (MD) is equally associated with all subtypes of breast cancer (BC). We investigated the association between MD and subsequent BC, considering invasiveness, means of detection, pathologic subtype, and the time elapsed since mammographic exploration and BC diagnosis. METHODS: BC cases occurring in the population of women who attended screening from 1997 through 2004 in Navarre, a Spanish region with a fully consolidated screening program, were identified via record linkage with the Navarre Cancer Registry (n = 1,172). Information was extracted from the records of their first attendance at screening in that period. For each case, we randomly selected four controls, matched by screening round, year of birth, and place of residence. Cases were classified according to invasiveness (ductal carcinoma in situ (DCIS) versus invasive tumors), pathologic subtype (considering hormonal receptors and HER2), and type of diagnosis (screen-detected versus interval cases). MD was evaluated by a single, experienced radiologist by using a semiquantitative scale. Data on BC risk factors were obtained by the screening program in the corresponding round. The association between MD and tumor subtype was assessed by using conditional logistic regression. RESULTS: MD was clearly associated with subsequent BC. The odds ratio (OR) for the highest MD category (MD >75%) compared with the reference category (MD <10%) was similar for DCIS (OR = 3.47; 95% CI = 1.46 to 8.27) and invasive tumors (OR = 2.95; 95% CI = 2.01 to 4.35). The excess risk was particularly high for interval cases (OR = 7.72; 95% CI = 4.02 to 14.81) in comparison with screened detected tumors (OR = 2.17; 95% CI = 1.40 to 3.36). Sensitivity analyses excluding interval cases diagnosed in the first year after MD assessment or immediately after an early recall to screening yielded similar results. No differences were seen regarding pathologic subtypes. The excess risk associated with MD persisted for at least 7 to 8 years after mammographic exploration. CONCLUSIONS: Our results confirm that MD is an important risk factor for all types of breast cancer. High breast density strongly increases the risk of developing an interval tumor, and this excess risk is not completely explained by a possible masking effect.This work was supported by research grants from Eli Lilly and Company (EV1 1082/08); and the Spanish Federation of Breast Cancer Patients (Federación Española de Cáncer de Mama) (FECMA 485 EPY 1170-10).S

    Mammographic density and risk of breast cancer by age and tumor characteristics

    Get PDF
    Introduction: Understanding whether mammographic density (MD) is associated with all breast tumor subtypes and whether the strength of association varies by age is important for utilizing MD in risk models. Methods: Data were pooled from six studies including 3414 women with breast cancer and 7199 without who underwent screening mammography. Percent MD was assessed from digitized film-screen mammograms using a computer-assisted threshold technique. We used polytomous logistic regression to calculate breast cancer odds according to tumor type, histopathological characteristics, and receptor (estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2)) status by age (51%) versus average density (11-25%). Women ages 2.1 cm) versus small tumors and positive versus negative lymph node status (P’s < 0.01). For women ages <55 years, there was a stronger association of MD with ER-negative breast cancer than ER-positive tumors compared to women ages 55–64 and ≥65 years (Page-interaction = 0.04). MD was positively associated with both HER2-negative and HER2-positive tumors within each age group. Conclusion: MD is strongly associated with all breast cancer subtypes, but particularly tumors of large size and positive lymph nodes across all ages, and ER-negative status among women ages <55 years, suggesting high MD may play an important role in tumor aggressiveness, especially in younger women

    Versican but not decorin accumulation is related to malignancy in mammographically detected high density and malignant-appearing microcalcifications in non-palpable breast carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammographic density (MD) and malignant-appearing microcalcifications (MAMCs) represent the earliest mammographic findings of non-palpable breast carcinomas. Matrix proteoglycans versican and decorin are frequently over-expressed in various malignancies and are differently involved in the progression of cancer. In the present study, we have evaluated the expression of versican and decorin in non-palpable breast carcinomas and their association with high risk mammographic findings and tumor characteristics.</p> <p>Methods</p> <p>Three hundred and ten patients with non-palpable suspicious breast lesions, detected during screening mammography, were studied. Histological examination was carried out and the expression of decorin, versican, estrogen receptor α (ERα), progesterone receptor (PR) and c-erbB2 (HER-2/neu) was assessed by immunohistochemistry.</p> <p>Results</p> <p>Histological examination showed 83 out of 310 (26.8%) carcinomas of various subtypes. Immunohistochemistry was carried out in 62/83 carcinomas. Decorin was accumulated in breast tissues with MD and MAMCs independently of the presence of malignancy. In contrast, versican was significantly increased only in carcinomas with MAMCs (median ± SE: 42.0 ± 9.1) and MD (22.5 ± 10.1) as compared to normal breast tissue with MAMCs (14.0 ± 5.8), MD (11.0 ± 4.4) and normal breast tissue without mammographic findings (10.0 ± 2.0). Elevated levels of versican were correlated with higher tumor grade and invasiveness in carcinomas with MD and MAMCs, whereas increased amounts of decorin were associated with <it>in situ </it>carcinomas in MAMCs. Stromal deposition of both proteoglycans was related to higher expression of ERα and PR in tumor cells only in MAMCs.</p> <p>Conclusions</p> <p>The specific accumulation of versican in breast tissue with high MD and MAMCs only in the presence of malignant transformation and its association with the aggressiveness of the tumor suggests its possible use as molecular marker in non-palpable breast carcinomas.</p

    Validation of DM-Scan, a computer-assisted tool to assess mammographic density in full-field digital mammograms

    Get PDF
    We developed a semi-automated tool to assess mammographic density (MD), a phenotype risk marker for breast cancer (BC), in full-field digital images and evaluated its performance testing its reproducibility, comparing our MD estimates with those obtained by visual inspection and using Cumulus, verifying their association with factors that influence MD, and studying the association between MD measures and subsequent BC risk. Three radiologists assessed MD using DM-Scan, the new tool, on 655 processed images (craniocaudal view) obtained in two screening centers. Reproducibility was explored computing pair-wise concordance correlation coefficients (CCC). The agreement between DM-Scan estimates and visual assessment (semi- uantitative scale, 6 categories) was quantified computing weighted kappa statistics (quadratic weights). DM-Scan and Cumulus readings were compared using CCC. Variation of DM-Scan measures by age, body mass index (BMI) and other MD modifiers was tested in regression mixed models with mammographic device as a random-effect term. The association between DM-Scan measures and subsequent BC was estimated in a case control study. All BC cases in screening attendants (2007 2010) at a center with full-field digital mammography were matched by age and screening year with healthy controls (127 pairs). DM-Scan was used to blindly assess MD in available mammograms (112 cases/119 controls). Unconditional logistic models were fitted, including age, menopausal status and BMI as confounders. DM-Scan estimates were very reliable (pairwise CCC: 0.921, 0.928 and 0.916). They showed a reasonable agreement with visual MD assessment (weighted kappa ranging 0.79-0.81). DM-Scan and Cumulus measures were highly concordant (CCC ranging 0.80-0.84), but ours tended to be higher (4%-5% on average). As expected, DM-Scan estimates varied with age, BMI, parity and family history of BC. Finally, DM-Scan measures were significantly associated with BC (p-trend=0.005). Taking MD=29%=3.10 (95% CI=1.35-7.14). Our results confirm that DM-Scan is a reliable tool to assess MD in full-field digital mammograms.This work was supported by research grants from Spain's Health Research Fund (Fondo de INvestigacion Santiaria) (PI060386 & PI09/1230); Gent per Gent Fund (EDEMAC Project) and the Spanish Federation of Breast Cancer Patients (Federacion Espanola de Cancer de Mama) (FECMA 485 EPY 1170-10).Pollán, M.; Llobet Azpitarte, R.; Miranda García, J.; Antón Guirao, J.; Casals El Busto, M.; Martinez Gomez, I.; Palop Jonquères, C.... (2013). Validation of DM-Scan, a computer-assisted tool to assess mammographic density in full-field digital mammograms. SpringerPlus. 2(242):1-13. https://doi.org/10.1186/2193-1801-2-242S1132242Ascunce N, Salas D, Zubizarreta R, Almazan R, Ibanez J, Ederra M: Cancer screening in Spain. Ann Oncol 2010, 21(Suppl 3):iii43-iii51.Assi V, Warwick J, Cuzick J, Duffy SW: Clinical and epidemiological issues in mammographic density. Nat Rev Clin Oncol 2012, 9: 33-40.Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1: 307-310.Boyd NF, Martin LJ, Yaffe MJ, Minkin S: Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 2011, 13: 223. 10.1186/bcr2942Byng JW, Yaffe MJ, Jong RA, Shumak RS, Lockwood GA, Tritchler DL, Boyd NF: Analysis of mammographic density and breast cancer risk from digitized mammograms. Radiographics 1998, 18: 1587-1598.Cabanes A, Pastor-Barriuso R, Garcia-Lopez M, Pedraz-Pingarron C, Sanchez-Contador C, Vazquez Carrete JA, Moreno MP, Vidal C, Salas D, Miranda-Garcia J, et al.: Alcohol, tobacco, and mammographic density: a population-based study. Breast Cancer Res Treat 2011, 129: 135-147. 10.1007/s10549-011-1414-5Cuzick J, Warwick J, Pinney E, Duffy SW, Cawthorn S, Howell A, Forbes JF, Warren RM: Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case–control study. J Natl Cancer Inst 2011, 103: 744-752. 10.1093/jnci/djr079Evans DG, Warwick J, Astley SM, Stavrinos P, Sahin S, Ingham S, McBurney H, Eckersley B, Harvie M, Wilson M, et al.: Assessing individual breast cancer risk within the U.K. National Health Service Breast Screening Program: a new paradigm for cancer prevention. Cancer Prev Res (Phila) 2012, 5: 943-951. 10.1158/1940-6207.CAPR-11-0458Garrido-Estepa M, Ruiz-Perales F, Miranda J, Ascunce N, Gonzalez-Roman I, Sanchez-Contador C, Santamarina C, Moreo P, Vidal C, Peris M, et al.: Evaluation of mammographic density patterns: reproducibility and concordance among scales. BMC Cancer 2010, 10: 485.Harvey JA: Quantitative assessment of percent breast density: analog versus digital acquisition. Technol Cancer Res Treat 2004, 3: 611-616.Highnam RP, Brady JM, Shepstone BJ: Estimation of compressed breast thickness during mammography. Br J Radiol 1998, 71: 646-653.Keller BM, Nathan DL, Gavenonis SC, Chen J, Conant EF, Kontos D: Reader variability in breast density estimation from full-field digital mammograms: the effect of image postprocessing on relative and absolute measures. Acad Radiol 2013. Epub ahead of printLi J, Szekely L, Eriksson L, Heddson B, Sundbom A, Czene K, Hall P, Humphreys K: High-throughput mammographic-density measurement: a tool for risk prediction of breast cancer. Breast Cancer Res 2012, 14: R114. 10.1186/bcr3238Lin LI: A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45: 255-268. 10.2307/2532051Manduca A, Carston MJ, Heine JJ, Scott CG, Pankratz VS, Brandt KR, Sellers TA, Vachon CM, Cerhan JR: Texture features from mammographic images and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2009, 18: 837-845. 10.1158/1055-9965.EPI-08-0631McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006, 15: 1159-1169. 10.1158/1055-9965.EPI-06-0034Nielsen M, Karemore G, Loog M, Raundahl J, Karssemeijer N, Otten JD, Karsdal MA, Vachon CM, Christiansen C: A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol 2011, 35: 381-387. 10.1016/j.canep.2010.10.011Olson JE, Sellers TA, Scott CG, Schueler BA, Brandt KR, Serie DJ, Jensen MR, Wu FF, Morton MJ, Heine JJ, et al.: The influence of mammogram acquisition on the mammographic density and breast cancer association in the mayo mammography health study cohort. Breast Cancer Res 2012, 14: R147. 10.1186/bcr3357Perez-Gomez B, Ruiz F, Martinez I, Casals M, Miranda J, Sanchez-Contador C, Vidal C, Llobet R, Pollan M, Salas D: Women's features and inter-/intra-rater agreement on mammographic density assessment in full-field digital mammograms (DDM-SPAIN). Breast Cancer Res Treat 2012, 132: 287-295. 10.1007/s10549-011-1833-3Pollan M, Lope V, Miranda-Garcia J, Garcia M, Casanova F, Sanchez-Contador C, Santamarina C, Moreo P, Vidal C, Peris M, et al.: Adult weight gain, fat distribution and mammographic density in Spanish pre- and post-menopausal women (DDM-Spain). Breast Cancer Res Treat 2012, 134: 823-838. 10.1007/s10549-012-2108-3Sala M, Salas D, Belvis F, Sanchez M, Ferrer J, Ibanez J, Roman R, Ferrer F, Vega A, Laso MS, et al.: Reduction in false-positive results after introduction of digital mammography: analysis from four population-based breast cancer screening programs in Spain. Radiology 2011, 258: 388-395. 10.1148/radiol.10100874Schousboe JT, Kerlikowske K, Loh A, Cummings SR: Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med 2011, 155: 10-20. 10.7326/0003-4819-155-1-201107050-00003Stone J, Ding J, Warren RM, Duffy SW, Hopper JL: Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 2010, 12: R97. 10.1186/bcr2778Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Sellers TA: Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomarkers Prev 2007, 16: 43-49. 10.1158/1055-9965.EPI-06-0738Vachon C, Fowler EE, Tiffenberg G, Scott C, Pankratz VS, Sellers TA, Heine JJ: Comparison of percent density from raw and processed full field digital mammography data. Breast Cancer Res 2013, 15: R1. 10.1186/bcr3372Yaffe MJ: Mammographic density. Measurement of mammographic density. Breast Cancer Res 2008, 10: 209. 10.1186/bcr2102Yaghjyan L, Colditz GA, Collins LC, Schnitt SJ, Rosner B, Vachon C, Tamimi RM: Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst 2011, 103: 1179-1189. 10.1093/jnci/djr22

    Mammographic density and ageing:A collaborative pooled analysis of cross-sectional data from 22 countries worldwide

    Get PDF
    BACKGROUND: Mammographic density (MD) is one of the strongest breast cancer risk factors. Its age-related characteristics have been studied in women in western countries, but whether these associations apply to women worldwide is not known. METHODS AND FINDINGS: We examined cross-sectional differences in MD by age and menopausal status in over 11,000 breast-cancer-free women aged 35-85 years, from 40 ethnicity- and location-specific population groups across 22 countries in the International Consortium on Mammographic Density (ICMD). MD was read centrally using a quantitative method (Cumulus) and its square-root metrics were analysed using meta-analysis of group-level estimates and linear regression models of pooled data, adjusted for body mass index, reproductive factors, mammogram view, image type, and reader. In all, 4,534 women were premenopausal, and 6,481 postmenopausal, at the time of mammography. A large age-adjusted difference in percent MD (PD) between post- and premenopausal women was apparent (-0.46 cm [95% CI: -0.53, -0.39]) and appeared greater in women with lower breast cancer risk profiles; variation across population groups due to heterogeneity (I2) was 16.5%. Among premenopausal women, the √PD difference per 10-year increase in age was -0.24 cm (95% CI: -0.34, -0.14; I2 = 30%), reflecting a compositional change (lower dense area and higher non-dense area, with no difference in breast area). In postmenopausal women, the corresponding difference in √PD (-0.38 cm [95% CI: -0.44, -0.33]; I2 = 30%) was additionally driven by increasing breast area. The study is limited by different mammography systems and its cross-sectional rather than longitudinal nature. CONCLUSIONS: Declines in MD with increasing age are present premenopausally, continue postmenopausally, and are most pronounced over the menopausal transition. These effects were highly consistent across diverse groups of women worldwide, suggesting that they result from an intrinsic biological, likely hormonal, mechanism common to women. If cumulative breast density is a key determinant of breast cancer risk, younger ages may be the more critical periods for lifestyle modifications aimed at breast density and breast cancer risk reduction

    Alcohol consumption, endogenous estrogen and mammographic density among premenopausal women

    Get PDF
    Introduction: Alcohol consumption may promote aromatization of androgens to estrogens, which may partly explain the observations linking alcohol consumption to higher breast cancer risk. Whether alcohol consumption is associated with endogenous estrogen levels, and mammographic density phenotypes in premenopausal women remains unclear. Methods: Alcohol consumption was collected by self-report and interview, using semi quantitative food frequency questionnaires, and a food diary during seven days of a menstrual cycle among 202 premenopausal women, participating in the Energy Balance and Breast Cancer Aspects (EBBA) study I. Estrogen was assessed in serum and daily in saliva across an entire menstrual cycle. Computer-assisted mammographic density (Madena) was obtained from digitized mammograms taken between days 7–12 of the menstrual cycle. Multivariable regression models were used to investigate the associations between alcohol consumption, endogenous estrogen and mammographic density phenotypes. Results: Current alcohol consumption was positively associated with endogenous estrogen, and absolute mammographic density. We observed 18 % higher mean salivary 17β-estradiol levels throughout the menstrual cycle, among women who consumed more than 10 g of alcohol per day compared to women who consumed less than 10 g of alcohol per day (p = 0.034). Long-term and past-year alcohol consumption was positively associated with mammographic density. We observed a positive association between alcohol consumption (past year) and absolute mammographic density; high alcohol consumers (≥7 drinks/week) had a mean absolute mammographic density of 46.17 cm2 (95 % confidence interval (CI) 39.39, 52.95), while low alcohol consumers (32.4 cm2), compared to low (<1 drink/week) alcohol consumers. Conclusion: Alcohol consumption was positively associated with daily endogenous estrogen levels and mammographic density in premenopausal women. These associations could point to an important area of breast cancer prevention. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0620-1) contains supplementary material, which is available to authorized users
    corecore