23 research outputs found

    Experimental infection of sheep with ovine and bovine Dichelobacter nodosus isolates

    Get PDF
    AbstractThe aim of this study was, under experimental conditions, to investigate infection of Norwegian White sheep with ovine and bovine isolates of Dichelobacter nodosus of varying virulence. In addition, the efficacy of gamithromycin as a treatment for the experimentally induced infections was examined. The study was performed as a single foot inoculation using a boot. Four groups, each with six lambs, were inoculated with four different challenge strains (Group 1: benign bovine strain; Group 2: virulent bovine strain; Group 3: benign ovine strain; Group 4: virulent ovine strain). The main criterion to determine that infection was transferred was that D. nodosus isolate was obtained by culture. After the trial all lambs were treated with gamithromycin. Clinical symptoms of footrot developed in all groups, and when removing the boots two weeks after challenge, D. nodosus was isolated from 5 of 24 experimental lambs. All lambs tested negative for D. nodosus by PCR within six weeks after treatment with gamithromycin. This study strongly indicates that D. nodosus isolates from both sheep and cattle can be transferred to sheep under experimental conditions. The study also indicates that gamithromycin may be effective against D. nodosus

    Experimental infection of cattle with ovine Dichelobacter nodosus isolates

    Get PDF
    BACKGROUND: Dichelobacter nodosus is the main causative agent of ovine footrot, and there are strong indications that the bacterium can be transferred to cattle grazing on the same pasture as sheep. The aim of this study was to investigate if benign and virulent D. nodosus strains isolated from sheep can be transferred to the interdigital skin of cattle under experimental conditions. Further, we wanted to observe the impact of such infection on bovine foot health, and test the effect of topical chlortetracycline (Cyclo spray(®): Eurovet) on the infection. FINDINGS: Six heifers were included in the study. After an initial 18-day maceration period, three heifers were inoculated on one single foot with a benign strain and three with a virulent strain by adding bacterial suspension in a bandage. The bandages were left on for 17 days, and when removed, D. nodosus was isolated from all six heifers. All six heifers developed interdigital dermatitis. In five of the heifers D. nodosus organisms were demonstrated within the epidermis. Twenty-four days after treatment with chlortetracycline all heifers were negative by cultivation, but tested positive for D. nodosus by polymerase chain reaction (PCR). Two of the six heifers still tested positive for D. nodosus by PCR 49 days after treatment. After 70 days, all heifers tested negative for D. nodosus. CONCLUSIONS: This study shows that both virulent and benign D. nodosus strains originating from sheep can be transferred to naïve heifers under experimental conditions. Further, the study supports the hypothesis that infections with virulent D. nodosus in cattle are associated with interdigital dermatitis. No conclusion regarding the treatment of D. nodosus infection with chlortetracycline was possible

    Cross-infection of virulent Dichelobacter nodosus between sheep and co-grazing cattle

    Get PDF
    AbstractDichelobacter nodosus is the main aetiological agent of ovine footrot and the bacterium has also been associated with interdigital dermatitis is cattle. The aim of this study was to investigate possible cross-infection of virulent D. nodosus between sheep and co-grazing cattle. Five farms, where sheep previously diagnosed with virulent D. nodosus were co-grazing with cattle for different periods of time, were included. The study sample consisted of 200 cows and 50 sheep. All cows were examined for the presence of interdigital dermatitis, and ten ewes, preferably with symptoms of footrot, had the footrot scores recorded. On each farm, the same ten ewes and ten cows were chosen for bacterial analyses. Swabs were analysed for D. nodosus by PCR and culturing. D. nodosus isolates were virulence-tested and assigned to serogroups by fimA variant determination. Biopsies were evaluated histopathologically and analysed by fluorescent in situ hybridization for D. nodosus, Treponema spp. and Fusobacterium necrophorum. D. nodosus defined as virulent by the gelatin gel test were isolated from 16 sheep from four farms and from five cows from two of the same farms. All five cows had interdigital dermatitis. Two of the cows stayed infected for at least eight months. By pulsed-field gel electrophoresis (PFGE), the isolates from the five cows were found to be genetically indistinguishable or closely related to isolates from sheep from the same farm. This indicates that cross-infection between sheep and cows have occurred

    A novel 3D skin explant model to study anaerobic bacterial infection

    Get PDF
    Skin infection studies are often limited by financial and ethical constraints, and alternatives, such as monolayer cell culture, do not reflect many cellular processes limiting their application. For a more functional replacement, 3D skin culture models offer many advantages such as the maintenance of the tissue structure and the cell types present in the host environment. A 3D skin culture model can be set up using tissues acquired from surgical procedures or post slaughter, making it a cost effective and attractive alternative to animal experimentation. The majority of 3D culture models have been established for aerobic pathogens, but currently there are no models for anaerobic skin infections. Footrot is an anaerobic bacterial infection which affects the ovine interdigital skin causing a substantial animal welfare and financial impact worldwide. Dichelobacter nodosus is a Gram-negative anaerobic bacterium and the causative agent of footrot. The mechanism of infection and host immune response to D. nodosus is poorly understood. Here we present a novel 3D skin ex vivo model to study anaerobic bacterial infections using ovine skin explants infected with D. nodosus. Our results demonstrate that D. nodosus can invade the skin explant, and that altered expression of key inflammatory markers could be quantified in the culture media. The viability of explants was assessed by tissue integrity (histopathological features) and cell death (DNA fragmentation) over 76 h showing the model was stable for 28 h. D. nodosus was quantified in all infected skin explants by qPCR and the bacterium was visualized invading the epidermis by Fluorescent in situ Hybridization. Measurement of pro-inflammatory cytokines/chemokines in the culture media revealed that the explants released IL1β in response to bacteria. In contrast, levels of CXCL8 production were no different to mock-infected explants. The 3D skin model realistically simulates the interdigital skin and has demonstrated that D. nodosus invades the skin and triggered an early cellular inflammatory response to this bacterium. This novel model is the first of its kind for investigating an anaerobic bacterial infection

    Interdigital dermatitis, heel horn erosion, and digital dermatitis in 14 Norwegian dairy herds

    Get PDF
    AbstractThe aim of this study was to assess infectious foot diseases, including identification and characterization of Dichelobacter nodosus and Treponema spp., in herds having problems with interdigital dermatitis (ID) and heel horn erosion (E) and in control herds expected to have few problems. We also wanted to compare diseased and healthy cows in all herds. The study included 14 dairy herds with a total of 633 cows. Eight herds had a history of ID and E, and 6 were control herds. All cows were scored for lameness, and infectious foot diseases on the hind feet were recorded after trimming. Swabs and biopsies were taken from the skin of 10 cows in each herd for bacterial analyses. In total, samples were taken from 34 cows with ID, 11 with E, 40 with both ID and E, and 8 with digital dermatitis (DD), and from 47 cows with healthy feet. Swabs were analyzed for identification and characterization of D. nodosus by PCR, culture, virulence testing, and serotyping. Biopsies were analyzed by fluorescent in situ hybridization regarding histopathology, identification, and characterization of Treponema spp., and identification of D. nodosus. Interdigital dermatitis was the most frequent foot disease, with a prevalence of 50.4% in problem herds compared with 26.8% in control herds. Heel horn erosion was recorded in 34.8% of the cows in problem herds compared with 22.1% in control herds. Dichelobacter nodosus was detected in 97.1% of the cows with ID, in 36.4% with E, in all cows with both ID and E, in all cows with DD, and in 66.0% of cows with healthy feet. All serogroups of D. nodosus except F and M were detected, and all isolates were defined as benign by the gelatin gel test. Treponema spp. were detected in 50.0% of the cows with ID, in 9.1% with E, in 67.5% with ID and E, in all cows with DD, and in 6.4% of those with healthy feet. In total, 6 previously described phylotypes (PT) of Treponema were detected: PT1, PT3, PT6, PT13, and PT15 in cows with ID, PT1 in a cow with E, and PT1, PT2, PT3, PT6, and PT13 in cows with both ID and E. One new phylotype (PT19) was identified. The epidermal damage score was higher but the difference in inflammatory response of the dermis was minor in cows with ID versus those with healthy feet. Fisher’s exact test revealed an association between ID and D. nodosus, and between ID and Treponema spp. Logistic regression revealed an association between both ID and E and dirty claws (odds ratios=1.9 and 2.0, respectively). Our study indicates that D. nodosus, Treponema spp., and hygiene are involved in the pathogenesis of ID

    Use of Extended Characteristics of Locomotion and Feeding Behavior for Automated Identification of Lame Dairy Cows.

    Get PDF
    This study was carried out to detect differences in locomotion and feeding behavior in lame (group L; n = 41; gait score ≥ 2.5) and non-lame (group C; n = 12; gait score ≤ 2) multiparous Holstein cows in a cross-sectional study design. A model for automatic lameness detection was created, using data from accelerometers attached to the hind limbs and noseband sensors attached to the head. Each cow's gait was videotaped and scored on a 5-point scale before and after a period of 3 consecutive days of behavioral data recording. The mean value of 3 independent experienced observers was taken as a definite gait score and considered to be the gold standard. For statistical analysis, data from the noseband sensor and one of two accelerometers per cow (randomly selected) of 2 out of 3 randomly selected days was used. For comparison between group L and group C, the T-test, the Aspin-Welch Test and the Wilcoxon Test were used. The sensitivity and specificity for lameness detection was determined with logistic regression and ROC-analysis. Group L compared to group C had significantly lower eating and ruminating time, fewer eating chews, ruminating chews and ruminating boluses, longer lying time and lying bout duration, lower standing time, fewer standing and walking bouts, fewer, slower and shorter strides and a lower walking speed. The model considering the number of standing bouts and walking speed was the best predictor of cows being lame with a sensitivity of 90.2% and specificity of 91.7%. Sensitivity and specificity of the lameness detection model were considered to be very high, even without the use of halter data. It was concluded that under the conditions of the study farm, accelerometer data were suitable for accurately distinguishing between lame and non-lame dairy cows, even in cases of slight lameness with a gait score of 2.5

    Den post-sovjetiske kronotop : Krusanovs og Pelevins romanuniverser i lys av Bakhtins kronotopbegrep

    Get PDF
    Den russiske litteraturteoretikeren og språkfilosofen Mikhail Bakhtin (1895-1975) viet størstedelen av sin karriere til studiet av romanen og ordet. Han er kanskje mest kjent for sine banebrytende monografier om Dostojevskij og Rabelais, mens hans andre verker ofte har kommet i skyggen av disse to. I denne oppgaven er det Bakhtins viktige og komplekse kronotopbegrep som utforskes i den hensikt å benytte det som analyseredskap for nyere litteratur. Hypotesen er at det i den post-sovjetiske litteraturen finnes en egen genredefinerende kronotop som rommer bearbeidelsen av den sovjetiske fortiden, samtidens omveltninger og fremtidens usikkerhet. De samtidige forfatterne Pavel Krusanov (1961) og Viktor Pelevin (1962) er representanter for en tilbakevendt linje innenfor russisk litteratur som hadde sitt utspring på attenhundretallet med Nikolaj Gogols bondefortellinger og Petersburgnoveller. Denne linjen står for en tidsgjengivelse hvor det realistiske har smeltet sammen med det magiske og det fantastiske. Et formspråk man kan hevde egner seg spesielt godt for bearbeidelsen av de særskilte post-sovjetiske temaene. Den litterære kronotopen uttrykker ulike speilinger av virkelig, historisk tid og rom i romanen og er ansvarlig for å skape mening, troverdighet og gjenkjennelse i leseren. Denne oppgaven avdekker at det finnes to typer kronotoper: Store, genredefinerende kronotoper og små, strukturerende og/eller plottskapende kronotoper - som ofte er knyttet til et motiv. De store kronotopene kan bestå av et ubegrenset antall mindre kronotoper. I jakten på den post-sovjetiske kronotop analyseres i denne oppgaven Krusanovs Ukus angela (2000) og Pelevins Generation "P" (1999) i lys av Bakhtins kronotopbegrep
    corecore