669 research outputs found
Reflections On Contributing To “Big Discoveries” About The Fly Clock: Our Fortunate Paths As Post-Docs With 2017 Nobel Laureates Jeff Hall, Michael Rosbash, And Mike Young
In the early 1980s Jeff Hall and Michael Rosbash at Brandeis University and Mike Young at Rockefeller University set out to isolate the period (per) gene, which was recovered in a revolutionary genetic screen by Ron Konopka and Seymour Benzer for mutants that altered circadian behavioral rhythms. Over the next 15 years the Hall, Rosbash and Young labs made a series of groundbreaking discoveries that defined the molecular timekeeping mechanism and formed the basis for them being awarded the 2017 Nobel Prize in Physiology or Medicine. Here the authors recount their experiences as post-docs in the Hall, Rosbash and Young labs from the mid-1980s to the mid-1990s, and provide a perspective of how basic research conducted on a simple model system during that era profoundly influenced the direction of the clocks field and established novel approaches that are now standard operating procedure for studying complex behavior
Including “Anyone” in the “Anytime, Anywhere” Paradigm: Strategies to Build Aceess to Distance Education
In the past 30 years, distance learning has come a long way in innovative technologies advancing opportunities for teaching and learning. In 2011, the public understands and accepts widely the once surprising concept of “Anytime, Anywhere” learning (Allen & Seaman, 2010). To expand our educational commitment to access and equity, this paper addresses the need and means to incorporate “Anyone” into this paradigm.
While we spend a great deal of time and effort teaching educators to adopt and design effective online learning, we focus much less on creating welcoming and accessible online learning environments for every student. This paper has three major sections: (1) defining the issues related to accessible online learning, (2) defining and providing examples of Universal Design Learning (UDL) and assistive technology easily applied to online classes, and (3) sharing strategies for online learning access by addressing policy issues, student needs and online course design. By introducing and discussing these areas of online course facilitation, our aim is to introduce new strategies and resources while also building awareness of the need to design our courses in higher education for the needs of all learners
The Missing Link: Discovering Your Facilitation Power For Online Course
Unfortunately, most of our faculty development related to online learning has been regarding designing courses. Yet where do we faculty spend most of our time? We spend it facilitating the courses, semester after semester. However, one of the reasons more one provides more guidance about online facilitation is that many people assume teaching online is more or less the same as traditional instruction. In fact, nothing can be further from the truth (Fink, 2003). Online learning shifts the focus from teacher to learners, and our role as educators from “all knowing experts” dispensing knowledge, to facilitators of more self-directed and independent learning. How do we do that? Where do we find good examples? Where are the boundaries for facilitating online learning? This paper provides recommendations to answer these and many more questions about facilitating online learning
Case Study of Empowerment through New Media Among Underrepresented Groups: GLBT Adults Gain Dominant Voice in the First Wave of Podcasting
The podcasting movement is frequently described as “Democratization of the Media.” This case study research about gay, lesbian, bisexual and transgender (GLBT) podcasters from late 2004 to early 2008 reveals and characterizes how podcasting has yielded results of empowerment, voice, and a new media forc
Living and Learning with Technology: Faculty as Reflective Practitioners in the Online Classroom
This qualitative study examined the experiences of 11 faculty members who have been involved in online instruction. The goal was to explore how assuming the role of adult learners in developing online courses contributed to their becoming critically reflective about their instructional practices. Faculty interviews revealed engagement in critical reflection and were used to suggest strategies for faculty development that could further support such perspectives and practice
Principles And Practices Fostering Inclusive Excellence: Lessons From The Howard Hughes Medical Institute’s Capstone Institutions
Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute’s (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others’ efforts to increase access to and persistence in STEM in higher education
Pharmacological And Genetic Reversal Of Age-Dependent Cognitive Deficits Attributable To Decreased Presenilin Function
Alzheimer\u27s disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced
Ubistatins Inhibit Proteasome-Dependent Degradation by Binding the Ubiquitin Chain
To identify previously unknown small molecules that inhibit cell cycle machinery, we performed a chemical genetic screen in Xenopus extracts. One class of inhibitors, termed ubistatins, blocked cell cycle progression by inhibiting cyclin B proteolysis and inhibited degradation of ubiquitinated Sic1 by purified proteasomes. Ubistatins blocked the binding of ubiquitinated substrates to the proteasome by targeting the ubiquitin-ubiquitin interface of Lys^(48)-linked chains. The same interface is recognized by ubiquitin-chain receptors of the proteasome, indicating that ubistatins act by disrupting a critical protein-protein interaction in the ubiquitin-proteasome system
Crisp1 and alopecia areata in C3H/HeJ mice
Alopecia areata (AA), a cell mediated autoimmune disease, is the second most common form of hair loss in humans. While the autoimmune disease is responsible for the underlying pathogenesis, the alopecia phenotype is ultimately due to hair shaft fragility and breakage associated with structural deficits. Quantitative trait genetic analyses using the C3H/HeJ mouse AA model identified cysteine-rich secretory protein 1 (Crisp1), a hair shaft structural protein, as a candidate gene within the major AA locus. Crisp1 transcripts in the skin at various times during disease development were barely detectable. In situ hybridization identified Crisp1 expression within the medulla of hair shafts from clinically normal strains of mice but not C3H/HeJ mice with AA. Follow-up work with 5-day-old C3H/HeJ mice with normal hair also had essentially no expression of Crisp1. Other non-inflammatory based follicular dystrophy mouse models with similar hair shaft abnormalities also have little or no Crisp1 expression. Shotgun proteomics, used to determine strain difference in hair proteins, confirmed that there was very little CRISP1 within normal C3H/HeJ mouse hair in comparison to 11 other strains. However, mutant mice with hair medulla defects also had undetectable levels of CRISP1 in their hair. Crisp1 null mice had normal skin, hair follicles, and hair shafts indicating that the lack of the CRISP1 protein does not translate directly into defects in the hair shaft or hair follicle. These results suggest that CRISP1 may be an important structural component of mouse hair and that its strain-specific dysregulation may indicate a predisposition to hair shaft disease such as AA.Fil: Sundberg, John P.. Vanderbilt University; Estados Unidos. The Jackson Laboratory; Estados UnidosFil: Awgulewitsch, Alejandro. Medical University of South Carolina; Estados UnidosFil: Pruett, Nathan D.. Medical University Of South Carolina; Estados UnidosFil: Potter, Cristhoper S.. The Jackson Laboratory; Estados UnidosFil: Silva, Kathleen A.. The Jackson Laboratory; Estados UnidosFil: Stearns, Timothy M.. The Jackson Laboratory; Estados UnidosFil: Sundberg, Beth A.. The Jackson Laboratory; Estados UnidosFil: Weigel Muñoz, Mariana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de BiologĂa y Medicina Experimental. FundaciĂłn de Instituto de BiologĂa y Medicina Experimental. Instituto de BiologĂa y Medicina Experimental; ArgentinaFil: Cuasnicu, Patricia Sara. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de BiologĂa y Medicina Experimental. FundaciĂłn de Instituto de BiologĂa y Medicina Experimental. Instituto de BiologĂa y Medicina Experimental; ArgentinaFil: King, Lloyd E. Jr. Vanderbilt University; Estados UnidosFil: Rice, Robert H.. University of California. Department of Nutrition and Department of Environmental Toxicology; Estados Unido
Partners in the Parks: Field Guide to an Experiential Program in the National Parks (1st edition)
When Joan Digby first proposed taking collegiate honors students into our national parks, I jumped at the chance. Within minutes of reading her email, I not only responded with an enthusiastic “Yes!” but went so far as to volunteer the resources of the Southern Utah University Honors Program to get things started. Nestled among 5 national parks in southwestern Utah, I felt our campus would be a natural focal point for the kind of program Joan envisioned. Within weeks we had laid the groundwork for a proof-of-concept pilot project at nearby Bryce Canyon National Park. Little did I know at the time, but I was taking the first steps on a nationwide journey that would introduce me to 11 amazing national parks, some 47 park rangers, and over 100 outstanding college students—with the prospect of these numbers growing annually. The aim of Partners in the Parks (PITP) from its inception has been to introduce, or reintroduce, collegiate honors students to this country: not the transformed environment that we have constructed on its surface but the bedrock world upon which it rests. Like de Toqueville, Jefferson, Thoreau, Emerson, and so many others, we recognized that the unique place that is America cannot be separated from the land upon which it was built. One valuable way to study and understand it, then, is to visit places where the bones of America lie exposed, often without the veneer of civilization, cultivation, or modernization: places protected by the people to preserve for this and future generations, original American landscapes, and important historical landmarks that illustrate and define what America was, is, and can be. PITP takes students deep into America’s national parks. PITP is a see-America-first program. While we recognize the importance of a global perspective in an overall honors education, our goal is to help students see and understand America before or in addition to going abroad. Indeed, for students without the desire or resources to leave the country, PITP offers many of the same kinds of personal development that make study abroad so valuable. In the Field Notes to Chapter 2, “Growing from Within,” Bill Atwill and Kathleen King, share their experience in Acadia National Park, observing how their students demonstrated valuable growth in the same four key areas that researchers of study abroad programs have identified in their alumni: personal discovery, academic commitment, cultural development, and career development. The student writings in this volume, such as Andy Grube’s “soul expanding” talk with Juste Gatari on the rocky coast of Mount Desert Island, aptly illustrate this important facet of the PITP experience. (See the Field Notes to Chapter 5, “Sitting There in Silence.”
- …