288 research outputs found

    The Influence of Motion and Stress on Optical Fibers

    Full text link
    We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical for science observation. Tests of fiber transmission and FRD conducted both before and after the lifetime tests reveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase in FRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over time from repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem from localized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelength dependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conducted on individual fibers and find the 266 microns VIRUS fibers to be immune to bending-induced FRD at bend radii of R > 10cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give details of a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P) at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number of optical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through the instrument can exceed 80%.Comment: 19 pages, 22 figure

    3D Spectrophotometry of Planetary Nebulae in the Bulge of M31

    Full text link
    We introduce crowded field integral field (3D) spectrophotometry as a useful technique for the study of resolved stellar populations in nearby galaxies. As a methodological test, we present a pilot study with selected extragalactic planetary nebulae (XPN) in the bulge of M31, demonstrating how 3D spectroscopy is able to improve the limited accuracy of background subtraction which one would normally obtain with classical slit spectroscopy. It is shown that due to the absence of slit effects, 3D is a most suitable technique for spectrophometry. We present spectra and line intensities for 5 XPN in M31, obtained with the MPFS instrument at the Russian 6m BTA, INTEGRAL at the WHT, and with PMAS at the Calar Alto 3.5m Telescope. Using 3D spectra of bright standard stars, we demonstrate that the PSF is sampled with high accuracy, providing a centroiding precision at the milli-arcsec level. Crowded field 3D spectrophotometry and the use of PSF fitting techniques is suggested as the method of choice for a number of similar observational problems, including luminous stars in nearby galaxies, supernovae, QSO host galaxies, gravitationally lensed QSOs, and others.Comment: (1) Astrophysikalisches Institut Potsdam, (2) University of Durham. 18 pages, 11 figures, accepted for publication in Ap

    Prototype development of the Integral-Field unit for VIRUS

    Get PDF
    VIRUS is a planned integral-field instrument for the Hobby-Eberly Telescope (HET). In order to achieve a large field-of-view and high grasp at reasonable costs, the approach is to replicate integral-field units (IFU) and medium sized spectrographs many times. The Astrophysical Institute Potsdam (AIP) contributes to VIRUS with the development and testing of the IFU prototype. This paper describes the optomechanical design and the manufacture of the fiber-based IFU subsystem. The initial VIRUS development aims to produce a prototype and to measure its performance. Additionally, techniques will be investigated to allow industrial replication of the highly specific fiber-bundle layout. This will be necessary if this technique is to be applied to the next generation of even larger astronomical instrumentation.Comment: 11 pages, 13 figures, to be published in SPIE proc. 627

    Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness.

    Get PDF
    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states

    PPAK Integral Field Spectroscopy survey of the Orion Nebula: Data Release

    Get PDF
    We present a low-resolution spectroscopic survey of the Orion nebula which data we release for public use. In this article, we intend to show the possible applications of this dataset analyzing some of the main properties of the nebula. We perform an integral field spectroscopy mosaic of an area of ~5' X 6' centered on the Trapezium region of the nebula, including the ionization front to the south-east. The analysis of the line fluxes and line ratios of both the individual and integrated spectra allowed us to determine the main characteristics of the ionization throughtout the nebula.The final dataset comprises 8182 individual spectra, which sample each one a circular area of \~2.7" diameter. The data can be downloaded as a single row-stacked spectra fits file plus a position table or as an interpolated datacube with a final sampling of 1.5"/pixel. The integrated spectrum across the field-of-view was used to obtain the main integrated properties of the nebula, including the electron density and temperature, the dust extinction, the Halpha integrated flux (after correcting for dust reddening), and the main diagnostic line ratios. The individual spectra were used to obtain line intensity maps of the different detected lines. These maps were used to study the distribution of the ionized hydrogen, the dust extinction, the electron density and temperature, and the helium and oxygen abundance...Comment: 13 pages, 8 figures, accepted for publishing in Astronomy & Astrophysic

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): Description and Early Pilot Survey Results

    Full text link
    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) will outfit the 10 m HET with a new wide field and an array of 150 integral-field spectrographs to survey a 420 sq. deg. area in the north Galactic cap. Each fiber-coupled unit spectrograph will cover 350-550 nm, simultaneously. This instrument, called VIRUS, will produce ~34,000 spectra per exposure, and will open up the emission-line universe to large surveys for the first time. The survey will detect 0.8 million Lyman-alpha emitting (LAE) galaxies with 1.9<z<3.5 and more than a million [OII] emitting galaxies with z<0.5. The 3-D map of LAE galaxies in 9 cubic Gpc volume will be used to measure the expansion history at this early epoch using baryonic acoustic oscillations and the shape of the power spectrum. The aim of HETDEX is to provide a direct detection of dark energy at z~3. The measurement will constrain the evolution of dark energy and will also provide 0.1%-level accuracy on the curvature of the Universe, ten times better than current. The prototype of the VIRUS unit spectrograph (VIRUS-P) is a powerful instrument in its own right. Used on the McDonald 2.7 m, it covers the largest area of any integral field spectrograph, and reaches wavelengths down to 340 nm. VIRUS-P is being used for a pilot survey to better measure the properties of LAE galaxies in support of HETDEX. We report initial results from this survey.Comment: 4 pages, 1 Postscript figure. Paper presented at conference "Panoramic Views of the Universe", Hayama, Japan, December 2007 (ASP Conference Series, in press

    3D Spectroscopy of Local Luminous Compact Blue Galaxies: Kinematics of NGC 7673

    Get PDF
    The kinematic properties of the ionized gas of local Luminous Compact Blue Galaxy (LCBG) NGC 7673 are presented using three dimensional data taken with the PPAK integral field unit at the 3.5-m telescope in the Centro Astron\'omico Hispano Alem\'an. Our data reveal an asymmetric rotating velocity field with a peak to peak difference of 60 km s1^{-1}. The kinematic centre is found to be at the position of a central velocity width maximum (σ=54±1\sigma=54\pm1 km s1^{-1}), which is consistent with the position of the luminosity-weighted centroid of the entire galaxy. The position angle of the minor rotation axis is 168^{\circ} as measured from the orientation of the velocity field contours. At least two decoupled kinematic components are found. The first one is compact and coincides with the position of the second most active star formation region (clump B). The second one is extended and does not have a clear optical counterpart. No evidence of active galactic nuclei activity or supernovae galactic winds powering any of these two components has been found. Our data, however, show evidence in support of a previously proposed minor merger scenario in which a dwarf galaxy, tentatively identified with clump B, is falling into NGC 7673. and triggers the starburst. Finally, it is shown that the dynamical mass of this galaxy may be severely underestimated when using the derived rotation curve or the integrated velocity width, under the assumption of virialization.Comment: Accepted for publication by MNRAS. The paper contains 10 figures and 2 table

    Astronomical optical frequency comb generation and test in a fiber-fed MUSE spectrograph

    Get PDF
    We here report on recent progress on astronomical optical frequency comb generation at innoFSPEC-Potsdam and present preliminary test results using the fiber-fed Multi Unit Spectroscopic Explorer (MUSE) spectrograph. The frequency comb is generated by propagating two free-running lasers at 1554.3 and 1558.9 nm through two dispersionoptimized nonlinear fibers. The generated comb is centered at 1590 nm and comprises more than one hundred lines with an optical-signal-to-noise ratio larger than 30 dB. A nonlinear crystal is used to frequency double the whole comb spectrum, which is efficiently converted into the 800 nm spectral band. We evaluate first the wavelength stability using an optical spectrum analyzer with 0.02 nm resolution and wavelength grid of 0.01 nm. After confirming the stability within 0.01 nm, we compare the spectra of the astro-comb and the Ne and Hg calibration lamps: the astro-comb exhibits a much larger number of lines than lamp calibration sources. A series of preliminary tests using a fiber-fed MUSE spectrograph are subsequently carried out with the main goal of assessing the equidistancy of the comb lines. Using a P3d data reduction software we determine the centroid and the width of each comb line (for each of the 400 fibers feeding the spectrograph): equidistancy is confirmed with an absolute accuracy of 0.4 pm

    GRB 060605: multi-wavelength analysis of the first GRB observed using integral field spectroscopy

    Full text link
    The long and relatively faint gamma-ray burst GRB 060605 detected by \emph{Swift}/BAT lasted about 20 sec. Its afterglow could be observed with \emph{Swift}/XRT for nearly 1 day, while \emph{Swift}/UVOT could detect the afterglow during the first 6 hours after the event. Here, we report on integral field spectroscopy of its afterglow performed with PMAS/PPak mounted at the Calar Alto 3.5 m telescope. In addition, we report on a detailed analysis of XRT and UVOT data and on the results of deep late-time VLT observations that reveal the GRB host galaxy. We find that the burst occurred at a redshift of zz=3.773, possibly associated with a faint, RC=26.4±0.3R_C=26.4 \pm 0.3 host. Based on the optical and X-ray data, we deduce information on the SED of the afterglow, the position of the cooling frequency in the SED, the nature of the circumburst environment, its collimation factor, and its energetics. We find that the GRB fireball was expanding into a constant-density medium and that the explosion was collimated with a narrow half-opening angle of about 2.4 degrees. The initial Lorentz factor of the fireball was about 250; however, its beaming-corrected energy release in the gamma-ray band was comparably low. The optical, X-ray afterglow, on the other hand, was rather luminous. Finally, we find that the data are consistent within the error bars with an achromatic evolution of the afterglow during the suspected jet break time at about 0.27 days after the burst.Comment: accepted in A&A; changed title, major reviews after referee's report; 15 pages and 14 figure
    corecore