63 research outputs found

    Experimental Extraction of Secure Correlations from a Noisy Private State

    Full text link
    We report experimental generation of a noisy entangled four-photon state that exhibits a separation between the secure key contents and distillable entanglement, a hallmark feature of the recently established quantum theory of private states. The privacy analysis, based on the full tomographic reconstruction of the prepared state, is utilized in a proof-of-principle key generation. The inferiority of distillation-based strategies to extract the key is exposed by an implementation of an entanglement distillation protocol for the produced state.Comment: 5 pages, 3 figures, final versio

    Development of High Technologies as an Indicator of Modern Industry in the Eu

    Get PDF
    The article tries to classify the EU states in terms of the advancement of structural changes in their industries on the basis of the increase in the share of advanced technologies in total industrial production, labour, added value, and surplus. In the times of the knowledge-based economy the ability to produce high-tech goods, the demand for which is growing much faster than for traditional goods, indicates the level of modernity of industry. The dynamic growth of the demand for knowledge-based high-tech goods results from the evolution of consumer habits, which are predominantly driven by educated and rich societies who demand that their sophisticated needs met. An important role in stimulating this demand is played by modern media as they instantly deliver information on the latest technical developments and are very efficient in transferring patterns of consumerism. The ability to adapt the structure of production to the needs of the market is crucial in defining a state's position in the international exchange of goods. This is due to the fact that the national technology is tightly interwoven with export abilities

    On-chip generation of high-dimensional entangled quantum states and their coherent control

    Get PDF
    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states7. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2)8, 9, 10, 11. Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode

    Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA

    Get PDF
    A Coulomb-excitation experiment to study electromagnetic properties of Ca42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in Ca42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca42, including the diagonal E2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2+ and 21,2+ states, as well as triaxiality for 01,2+ states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca42

    Superdeformed and Triaxial States in Ca 42

    Get PDF
    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time

    Cross-talk between high light stress and plant defence to the two-spotted spider mite in Arabidopsis thaliana

    Get PDF
    Little is known about how plants deal with arthropod herbivores under the fluctuating light intensity and spectra which occur in natural environments. Moreover, the role of simultaneous stress such as excess light (EL) in the regulation of plant responses to herbivores is poorly characterized. In the current study, we focused on a mite-herbivore, specifically, the two-spotted spider mite (TSSM), which is one of the major agricultural pests worldwide. Our results showed that TSSM-induced leaf damage (visualized by trypan blue staining) and oviposition rate (measured as daily female fecundity) decreased after EL pre-treatment in wild-type Arabidopsis plants, but the observed responses were not wavelength specific. Thus, we established that EL pre-treatment reduced Arabidopsis susceptibility to TSSM infestation. Due to the fact that a portion of EL energy is dissipated by plants as heat in the mechanism known as non-photochemical quenching (NPQ) of chlorophyll fluorescence, we tested an Arabidopsis npq4-1 mutant impaired in NPQ. We showed that npq4-1 plants are significantly less susceptible to TSSM feeding activity, and this result was not dependent on light pre-treatment. Therefore, our findings strongly support the role of light in plant defence against TSSM, pointing to a key role for a photo-protective mechanism such as NPQ in this regulation. We hypothesize that plants impaired in NPQ are constantly primed to mite attack, as this seems to be a universal evolutionarily conserved mechanism for herbivores

    Simulating the vibrational quantum dynamics of molecules using photonics

    Get PDF
    Advances in control techniques for vibrational quantum states in molecules present new challenges for modelling such systems, which could be amenable to quantum simulation methods. Here, by exploiting a natural mapping between vibrations in molecules and photons in waveguides, we demonstrate a reprogrammable photonic chip as a versatile simulation platform for a range of quantum dynamic behaviour in different molecules. We begin by simulating the time evolution of vibrational excitations in the harmonic approximation for several four-atom molecules, including H2CS, SO3, HNCO, HFHF, N4 and P4. We then simulate coherent and dephased energy transport in the simplest model of the peptide bond in proteins—N-methylacetamide—and simulate thermal relaxation and the effect of anharmonicities in H2O. Finally, we use multi-photon statistics with a feedback control algorithm to iteratively identify quantum states that increase a particular dissociation pathway of NH3. These methods point to powerful new simulation tools for molecular quantum dynamics and the field of femtochemistry

    Catalytic activity of Pd-Ni in the oxidation of hydrogen for the safety of Catalytic activity of Pd-Ni in the oxidation of hydrogen for the safety of nuclear power plan

    No full text
    Pd-Ni/Al2O3 systems were investigated in the reaction of hydrogen oxidation in terms of their possible application as catalysts used in passive autocatalytic recombiners (PARs) used in nuclear power plants. Testing experiments were carried out in a flowing system at different temperatures and humidity of the reaction mixture. The bimetallic catalysts exhibited higher response to the increase of temperature and higher resistance to inhibit water than the monometallic palladium catalyst. They showed excellent stability during a few tens of hours, similarly, like their monometallic counterpart. Our bimetallic catalysts of hydrogen oxidation can be used as cheaper alternatives to catalysts based on the precious metals in the hydrogen oxidation without loss of their activity over time

    Study on operating load of the compression ignition engine

    No full text
    Operation of car engines definitely shows varied values of parameters such as crankshaft speed or load. This paper presents the research and results on load and crankshaft speed in a compression ignition engine. Therefore, the research focused on an operation of a passenger car under urban and non-urban conditions. Our NI Diadem Analysis-based research referred to the data acquired by an OBD-II system. The results obtained enabled some layered charts to depict a frequency of operating states as specified by engine load and speed as well as histograms of these parameters in individual rides. Our investigation showed that operating conditions have an impact on engine operating states. In urban conditions, our engine operated within the range of 700-2000 rpm but idle was more than 50% of the time and load in most cases was not higher than 20%. In non-urban conditions, our engine operated within the range from 700 to 3000 rpm and load was up to 70%
    corecore