58 research outputs found

    Multi-Locus Phylogeny Of Sponge-Dwelling Snapping Shrimp (Caridea: Alpheidae: Synalpheus) Supports Morphology-Based Species Concepts

    Get PDF
    Alpheid snapping shrimp are one of the most diverse groups of coral-reef fauna, and sponge-dwelling shrimp in the genus Synalpheus (gambarelloides species group) have in particular become a model system for studying the evolution of social biology and host use in marine invertebrates. Despite recent advances in understanding the evolution and systematics of Synalpheus, the taxonomy and phylogenetic relationships within this group remain challenging. More than 20 new species in the S. gambarelloides species group have been described over the past two decades, primarily within several cryptic species complexes, which has doubled the known diversity of this group in the West Atlantic. Here we construct a new phylogenetic tree describing relationships between 40 different species from the S. gambarelloides-group (119 individuals from across the Caribbean), using a combined dataset consisting of two mitochondrial loci (16S and COI), one nuclear protein-coding gene (elongation-factor 2), and 33 morphological characters. Putative conspecific specimens of Synalpheus from multiple locations across the Caribbean were always monophyletic (with one exception), providing strong support for the validity of species concepts based on morphology. Our study also provides further evidence for the monophyly of the S. gambarelloides-group in the Caribbean, resolves the molecular relationships within many recently described species complexes, and provides a new phylogenetic framework for future evolutionary studies of this group

    Determinants of Habitat Selection by Hatchling Australian Freshwater Crocodiles

    Get PDF
    Animals almost always use habitats non-randomly, but the costs and benefits of using specific habitat types remain unknown for many types of organisms. In a large lake in northwestern Australia (Lake Argyle), most hatchling (<12-month-old) freshwater crocodiles (Crocodylus johnstoni) are found in floating vegetation mats or grassy banks rather than the more widely available open banks. Mean body sizes of young crocodiles did not differ among the three habitat types. We tested four potential explanations for non-random habitat selection: proximity to nesting sites, thermal conditions, food availability, and exposure to predation. The three alternative habitat types did not differ in proximity to nesting sites, or in thermal conditions. Habitats with higher food availability harboured more hatchlings, and feeding rates (obtained by stomach-flushing of recently-captured crocodiles) were highest in such areas. Predation risk may also differ among habitats: we were twice as likely to capture a crocodile after seeing it in open-bank sites than in the other two habitat types. Thus, habitat selection of hatchling crocodiles in this system may be driven both by prey availability and by predation risk

    Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    Get PDF
    Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Synalpheus pinkfloydi sp. nov., a new pistol shrimp from the tropical eastern Pacific (Decapoda: Alpheidae)

    No full text
    A new, conspicuously coloured species of the alpheid genus Synalpheus Spence Bate, 1888, is described based on material collected on the Pacific coast of Panama. Synalpheus pinkfloydi sp. nov. is closely related to the western Atlantic S. antillensis Coutière, 1909, the two taxa being transisthmian, cryptic sister species. Both species are characterised by the distal areas of their major and minor chelae coloured in an intense, almost glowing pink-red. The morphological differences between S. pinkfloydi sp. nov. and S. antillensis Coutière, 1909 are subtle, being limited to the slightly different proportions of the merus of both chelipeds, distodorsal armature of the major cheliped merus, relative length of the antennal scaphocerite, and body size. However, they are genetically different with a 10.2% sequence divergence in COI. Based on molecular clock estimates, these transisthmian taxa diverged around 6.8–7.8 mya, i.e. well before the final closure of the Isthmus of Panama 2.5–3 mya
    corecore