3 research outputs found

    Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII

    Get PDF
    More than ten state-of-the-art regional air quality models have been applied as part of the Air Quality Model Evaluation International Initiative (AQMEII). These models were run by twenty independent groups in Europe and North America. Standardised modelling outputs over a full year (2006) from each group have been shared on the web-distributed ENSEMBLE system, which allows for statistical and ensemble analyses to be performed by each group. The estimated ground-level ozone mixing ratios from the models are collectively examined in an ensemble fashion and evaluated against a large set of observations from both continents. The scale of the exercise is unprecedented and offers a unique opportunity to investigate methodologies for generating skilful ensembles of regional air quality models outputs. Despite the remarkable progress of ensemble air quality modelling over the past decade, there are still outstanding questions regarding this technique. Among them, what is the best and most beneficial way to build an ensemble of members? And how should the optimum size of the ensemble be determined in order to capture data variability as well as keeping the error low? These questions are addressed here by looking at optimal ensemble size and quality of the members. The analysis carried out is based on systematic minimization of the model error and is important for performing diagnostic/probabilistic model evaluation. It is shown that the most commonly used multi-model approach, namely the average over all available members, can be outperformed by subsets of members optimally selected in terms of bias, error, and correlation. More importantly, this result does not strictly depend on the skill of the individual members, but may require the inclusion of low-ranking skill-score members. A clustering methodology is applied to discern among members and to build a skilful ensemble based on model association and data clustering, which makes no use of priori knowledge of model skill. Results show that, while the methodology needs further refinement, by optimally selecting the cluster distance and association criteria, this approach can be useful for model applications beyond those strictly related to model evaluation, such as air quality forecasting. (C) 2012 Elsevier Ltd. All rights reserved.Peer reviewedSubmitted Versio

    Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations

    Get PDF
    Copyright 2012 Elsevier B.V., All rights reserved.Accurate regional air pollution simulation relies strongly on the accuracy of the mesoscale meteorological simulation used to drive the air quality model. The framework of the Air Quality Model Evaluation International Initiative (AQMEII), which involved a large international community of modeling groups in Europe and North America, offered a unique opportunity to evaluate the skill of mesoscale meteorological models for two continents for the same period. More than 20 groups worldwide participated in AQMEII, using several meteorological and chemical transport models with different configurations. The evaluation has been performed over a full year (2006) for both continents. The focus for this particular evaluation was meteorological parameters relevant to air quality processes such as transport and mixing, chemistry, and surface fluxes. The unprecedented scale of the exercise (one year, two continents) allowed us to examine the general characteristics of meteorological models' skill and uncertainty. In particular, we found that there was a large variability between models or even model versions in predicting key parameters such as surface shortwave radiation. We also found several systematic model biases such as wind speed overestimations, particularly during stable conditions. We conclude that major challenges still remain in the simulation of meteorology, such as nighttime meteorology and cloud/radiation processes, for air quality simulation.Peer reviewedFinal Accepted Versio
    corecore