868 research outputs found

    Relating satellite imagery with grain protein content

    Get PDF
    Satellite images, captured during the growing seasons of barley, sorghum and wheat were analysed to establish a relationship between the spectral response and the harvested grain protein content. This study was conducted near Jimbour (approx. 151°10’E and 27°05’S) in southern Queensland. Grain protein contents of the geo-referenced samples, collected manually during the harvest, were determined using a laboratory-based near-infrared spectrophotometer. Grain protein contents in grain varied between 7.4–15.2% in barley, 6.2– 10.6% in sorghum and 13.1–15.6% in wheat. The Landsat images of 18 September 1999 (a week after barley flowering), 5 March 2000 (three weeks before sorghum harvest), and 15 August 2001 (two weeks before wheat flowering) were analysed. Additionally, an ASTER image of 24 September 2001 (three weeks after wheat flowering) was also examined. Digital numbers, extracted from raw image bands and derived indices, were correlated with grain protein contents. The grain protein content in barley was correlated strongly (r>0.80) with bands 2, 4 and 5 of the Landsat scene, first principal component, and the tasselled cap brightness and greenness indices. Similarly, wheat protein content was well correlated (r>0.75) with the near infrared band (band 4) of the Landsat scene, first principal component, and the tasselled cap brightness, greenness and wetness indices. The band 3 (near infrared band) of the ASTER image, captured well after flowering, was moderately correlated (r<0.5) with the protein content of the wheat. However, the grain protein content in sorghum was found poorly correlated (r<0.20) with Landsat image bands and indices. Results indicate that it may be possible to use certain bands and indices of the satellite images, captured around the time of flowering, to predict grain protein content of barley and wheat crops

    Hydrogen Sulfide Donor GYY4137 Acts Through Endothelial Nitric Oxide to Protect Intestine in Murine Models of Necrotizing Enterocolitis and Intestinal Ischemia

    Get PDF
    BACKGROUND: Necrotizing enterocolitis (NEC) in premature infants is often a devastating surgical condition with poor outcomes. GYY4137 is a long-acting donor of hydrogen sulfide, a gasotransmitter that is protective against intestinal injury in experimental NEC, likely through protection against injury secondary to ischemia. We hypothesized that administration of GYY4137 would improve mesenteric perfusion, reduce intestinal injury, and reduce inflammatory responses in experimental NEC and ischemia-reperfusion injury, and that these benefits would be mediated through endothelial nitric oxide synthase-dependent pathways. METHODS: NEC was induced in C57BL/6 wild-type (WT) and endothelial nitric oxide synthase (eNOS) knockout (eNOSKO) pups via maternal separation, formula feeding, enteral lipopolysaccharide, and intermittent hypoxic and hypothermic stress. Pups received daily intraperitoneal injections of 50 mg/kg GYY4137 or phosphate buffered saline vehicle. In separate groups, adult male WT and eNOSKO mice underwent superior mesenteric artery occlusion for 60 min. Before abdominal closure, 50 mg/kg GYY4137 or phosphate buffered saline vehicle was administered into the peritoneal cavity. Laser doppler imaging was used to assess mesenteric perfusion of pups at baseline and on postnatal day 9, and the adult mice at baseline and 24 h after ischemic insult. After euthanasia, the terminal ileum of each animal was fixed, paraffin embedded, sectioned, and stained with hematoxylin and eosin. Sections were blindly graded using published injury scores. Intestinal tissue was homogenized and cytokines measured by ELISA. Data were compared using Mann-Whitney U test, and P-values <0.05 were significant. RESULTS: After NEC and ischemia reperfusion (I/R) injury, GYY4137 improved perfusion in WT mice compared to vehicle, but this effect was lost in the eNOSKO animals. Histologic injury followed a similar pattern with reduced intestinal injury in WT mice treated with GYY4137, and no significant improvement in the eNOSKO group. Cytokine expression after GYY4137 administration was altered by the ablation of eNOS in both NEC and I/R injury groups, with significant differences noted in Interleukin 6 and vascular endothelial growth factor. CONCLUSIONS: GYY4137, a long-acting donor of hydrogen sulfide, has potential as a therapeutic compound for NEC. It improves mesenteric perfusion and intestinal injury in experimental NEC and intestinal I/R injury, and these benefits appear to be mediated through eNOS-dependent pathways

    Crop maturity mapping using a low-cost low-altitude remote sensing system

    Get PDF
    The objective of this study was to assess the ability of the 'low-cost low-altitude (LCLA) remote sensing system' to map the maturity of a barley crop. Monitoring maturity is important from a frost/pest/disease susceptibility perspective. It also allows harvest to be planned, and in this case, screens varieties for adaptation to potentially tough seasons. The study area, a barley variety trial, was at 'Lundavra' near Goondiwindi in Southern Queensland (-28.056º, 150.087º). The LCLA remote sensing system consisted of digital cameras which, along with controlling electronics, were positioned in an unmanned aerial vehicle (UAV). The range of growth stages present varied from Zadok 43–59. Areas-of-interest were randomly selected from the variety plots, and a statistical package utilised to perform discriminant function analysis of the spectral values. The classification results (when predicting the original 14 classes) indicated that the predictive power was weak, with 23% correctly classified. As each class represents an individual growth stage of the crop, a difference of one in the Zadok scale can mean as little as an extra leaf unfolded on the plant. The accuracy was further improved by broadening the groupings to six secondary growth stages, three principal growth stages, and finally refining the classification to the two primary growth stages i.e. booting (Z40–49) and emergence (Z50–59). This resulted in a classification accuracy of 83.5%. The classification results achieved with the LCLA remote sensing system was quite acceptable, especially considering that the image was taken over a month after the growth stages were recorded

    Application of spectroscopic method to predict sugar content of sugarcane internodes

    Get PDF
    The aim of this study was to investigate the potential of near-infrared (NIR) reflectance spectroscopy for predicting sugar content of sugarcane from internode samples. NIR spectral data were measured using a full-range spectroradiometer (FRS) in the wavelength region between 350 and 2,500 nm based on cross sectional scanning method (CSSM) and skin scanning method (SSM). Statistical models were developed using the partial least square (PLS) to interpret the spectral data and develop calibration model for the sugar content (Brix) of sugarcane. Both CSSM and SSM had good prediction accuracies in predicting Brix values, with the corresponding correlation of determination (R2) values of 0.92 and 0.82 and root mean square error of prediction (RMSEP) of 1.03 and 1.50 Brix respectively. These results showed that the FRS can be used to predict the sugar content from internode samples using CSSM or SSM. However, CSSM was found to give better prediction accuracy than SSM. These findings showed that spectroscopic methods have the potential to be applied for rapid determination of sugar content from stalk samples in the fields

    Prediction of sugarcane quality from juice samples using portable spectroscopy

    Get PDF
    Rapid determination of sugarcane quality using low-cost and portable equipment is more practical for field use. Thus, this study explored the potential application of a portable visible and shortwave near infrared spectroradiometer (VNIRS) to predict pol and brix from sugarcane juice samples. A total of 100 sugarcane juice samples for each clear and raw juice samples were assessed. The spectral data were collected by scanning the juice samples in a cuvette with 10 mm path length using transmittance mode. Partial least squares (PLS) and principal component analysis (PCA) were applied to interpret the spectra and develop both calibration and prediction models. The prediction performances for the clear juice samples were good with coefficient of determination (R2) values of pol and brix were 0.85 and 0.84, respectively. For the raw juice samples, the prediction performances were acceptable with R2 values for pol and brix were 0.73 and 0.74, respectively. Based on these results, it was concluded that the VNIRS combined with PLS models could be applied to predict sugarcane quality from both clear and raw sugarcane juices

    The route and timing of hydrogen sulfide therapy critically impacts intestinal recovery following ischemia and reperfusion injury

    Get PDF
    PURPOSE: Hydrogen sulfide (H2S) has many beneficial properties and may serve as a novel treatment in patients suffering from intestinal ischemia-reperfusion injury (I/R). The purpose of this study was to examine the method of delivery and timing of administration of H2S for intestinal therapy during ischemic injury. We hypothesized that 1) route of administration of hydrogen sulfide would impact intestinal recovery following acute mesenteric ischemia and 2) preischemic H2S conditioning using the optimal mode of administration as determined above would provide superior protection compared to postischemic application. METHODS: Male C57BL/6J mice underwent intestinal ischemia by temporary occlusion of the superior mesenteric artery. Following ischemia, animals were treated according to one of the following (N=6 per group): intraperitoneal or intravenous injection of GYY4137 (H2S-releasing donor, 50mg/kg in PBS), vehicle, inhalation of oxygen only, inhalation of 80ppm hydrogen sulfide gas. Following 24-h recovery, perfusion was assessed via laser Doppler imaging, and animals were euthanized. Perfusion and histology data were assessed, and terminal ileum samples were analyzed for cytokine production following ischemia. Once the optimal route of administration was determined, preischemic conditioning with H2S was undertaken using that route of administration. All data were analyzed using Mann-Whitney. P-values <0.05 were significant. RESULTS: Mesenteric perfusion following intestinal I/R was superior in mice treated with intraperitoneal (IP) GYY4137 (IP vehicle: 25.6±6.0 vs. IP GYY4137: 79.7±15.1; p=0.02) or intravenous (IV) GYY4137 (IV vehicle: 36.3±5.9 vs. IV GYY4137: 100.7±34.0; p=0.03). This benefit was not observed with inhaled H2S gas (O2 vehicle: 66.6±11.4 vs. H2S gas: 81.8±6.0; p=0.31). However, histological architecture was only preserved with intraperitoneal administration of GYY4127 (IP vehicle: 3.4±0.4 vs. IP GYY4137: 2±0.3; p=0.02). Additionally, IP GYY4137 allowed for significant attenuation of inflammatory chemokine production of IL-6, IP-10 and MIP-2. We then analyzed whether there was a difference between pre- and postischemic administration of IP GYY4137. We found that preconditioning of animals with intraperitoneal GYY4137 only added minor improvements in outcomes compared to postischemic application. CONCLUSION: Therapeutic benefits of H2S are superior with intraperitoneal application of an H2S donor compared to other administration routes. Additionally, while intraperitoneal treatment in both the pre- and postischemic period is beneficial, preischemic application of an H2S donor was found to be slightly better. Further studies are needed to examine long term outcomes and further mechanisms of action prior to widespread clinical application. TYPE OF STUDY: Basic science. LEVEL OF EVIDENCE: N/A

    Constraining Upper Troposphere/Lower Stratosphere Aerosol Physical Processes with High-Altitude Aircraft Measurements

    Get PDF
    Interest in a more complete understanding of the sources, composition and microphysics of stratospheric aerosol particles has intensified during recent years for several reasons: (1) small volcanic eruptions have been recognized as a driver of short-term changes in climate forcing; (2) emissions of sulfur dioxide (SO2) and other aerosol precursors have shifted to south Asia and other low latitude regions with intense vertical transport; (3) organic material has been recognized as a key contributor to lower stratospheric aerosol mass; and (4) interest in possible solar radiation management (geoengineering) through significant enhancements in stratospheric aerosols has intensified. To address stratospheric aerosol science issues, we are proposing a NASA Earth Ventures mission to NASA to provide extensive high-altitude aircraft measurements of critical gas-phase and aerosol properties at multiple locations across the planet. In this presentation, we will discuss the objectives of the proposed campaign, the measurements provided, the sampling strategy, and the modeling and analysis approaches that would be used to address specific science questions

    Mesenchymal Stromal Cell Therapy for the Treatment of Intestinal Ischemia: Defining the Optimal Cell Isolate for Maximum Therapeutic Benefit

    Get PDF
    Intestinal ischemia is a devastating intraabdominal emergency that often necessitates surgical intervention. Mortality rates can be high, and patients who survive often have significant long-term morbidity. The implementation of traditional medical therapies to prevent or treat intestinal ischemia have been sparse over the last decade, and therefore, the use of novel therapies are becoming more prevalent. Cellular therapy using mesenchymal stromal cells is one such treatment modality that is attracting noteworthy attention in the scientific community. Several groups have seen benefit with cellular therapy, but the optimal cell line has not been identified. The purpose of this review is to: 1) Review the mechanism of intestinal ischemia and reperfusion injury, 2) Identify the mechanisms of how cellular therapy may be therapeutic for this disease, and 3) Compare various MSC tissue sources to maximize potential therapeutic efficacy in the treatment of intestinal I/R diseases

    Buteo Nesting Ecology: Evaluating Nesting of Swainson’s Hawks in the Northern Great Plains

    Get PDF
    Swainson’s hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson’s hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson’s hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%–42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson’s hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson’s hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson’s hawks arriving to the breeding grounds
    corecore