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Abstract

Background: Necrotizing enterocolitis (NEC) in premature infants is often a devastating surgical 

condition with poor outcomes. GYY4137 is a long-acting donor of hydrogen sulfide (H2S), a 

gasotransmitter that is protective against intestinal injury in experimental NEC, likely through 

protection against injury secondary to ischemia. We hypothesized that administration of GYY4137 

would improve mesenteric perfusion, reduce intestinal injury, and reduce inflammatory responses 

in experimental NEC and ischemia-reperfusion injury, and that these benefits would be mediated 

through endothelial nitric oxide synthase-dependent pathways.

Methods: NEC was induced in C57BL/6 wild type (WT) and endothelial nitric oxide synthase 

(eNOS) knockout (eNOSKO) pups via maternal separation, formula feeding, enteral 

lipopolysaccharide, and intermittent hypoxic and hypothermic stress. Pups received daily 

intraperitoneal injections of 50mg/kg GYY4137 or PBS vehicle. In separate groups, adult male 

WT and eNOSKO mice underwent superior mesenteric artery occlusion for 60 minutes. Prior to 

abdominal closure, 50mg/kg GYY4137 or PBS vehicle was administered into the peritoneal 

cavity. Laser Doppler Imaging was used to assess mesenteric perfusion of pups at baseline and on 

P9, and the adult mice at baseline and 24 hours post-ischemic insult. After euthanasia, the terminal 

ileum of each animal was fixed, paraffin embedded, sectioned, and stained with H&E. Sections 

were blindly graded using published injury scores. Intestinal tissue was homogenized and 

cytokines measured by ELISA. Data were compared using Mann-Whitney, and p-values <0.05 

were significant.
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Results: After NEC and I/R injury, GYY4137 improved perfusion in WT mice compared to 

vehicle, but this effect was lost in the eNOSKO animals. Histologic injury followed a similar 

pattern with reduced intestinal injury in WT mice treated with GYY4137, and no significant 

improvement in the eNOSKO group. Cytokine expression after GYY4137 administration was 

altered by the ablation of eNOS in both NEC and I/R injury groups, with significant differences 

noted in IL-6 and VEGF.

Conclusion: GYY4137, a long-acting donor of H2S, has potential as a therapeutic compound for 

NEC. It improves mesenteric perfusion and intestinal injury in experimental NEC and intestinal 

I/R injury, and these benefits appear to be mediated through eNOS-dependent pathways.
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INTRODUCTION:

Necrotizing enterocolitis (NEC) remains a morbid condition seen in premature infants. Few 

therapeutic options are currently available, and patients often require extensive surgical 

resection of diseased bowel [1]. Its cause is multifactorial, but ischemia and intestinal 

necrosis are felt to be a common final pathway. Mortality rates are estimated to be as high as 

40% in these patients [2], and therefore, novel therapies are desperately needed.

A growing body of evidence points to hydrogen sulfide (H2S) as a compound with potential 

benefit during ischemia. Both in vivo and in vitro studies have demonstrated that tissue 

injury, especially secondary to ischemia, can be rescued by H2S [3-6]. Most experimental 

animal models of NEC involve some sort of intermittent systemic hypoxia, coupled with 

formula feeding and enteral inoculation with bacterial antigens [7-9]. While it is clear that 

ischemic insult alone does not result in NEC, further investigation into the salvage effects of 

H2S can be bolstered by evaluation of treatment of intestinal ischemia reperfusion (I/R) 

injury, a much more exact and reproducible model. Previous work has shown that sodium 

hydrosulfide (NaHS), a H2S salt, is protective against intestinal I/R injury in adult mice [10], 

and similar benefits have been demonstrated in experimental NEC with other hydrogen 

sulfide donors [11].

In an intestinal I/R model, the benefit conferred by the NaHS was shown to be dependent on 

endothelial nitric oxide [10]. Endothelial cells constitutively express the enzyme endothelial 

nitric oxide synthase (eNOS), which produces the gasotransmitter nitric oxide (NO) [12]. 

This molecule acts as a vasodilator, and is especially important in the perinatal period [12, 

13]. In our previous work, animals that were homozygous knockouts for eNOS did not 

demonstrate the same improvement after injury as wild type mice did with NaHS therapy 

[10].

NaHS and its counterpart sodium sulfide (Na2S) are both salts at room temperature and are 

short acting and highly volatile. They are not stable in aqueous solution at all, and their H2S 

production decreases quickly over time as soon as they are in solution. Additionally, they are 

malodorous and therefore may be less desirable as treatments for future clinical work. The 
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synthetic options include AP39 [10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) 

triphenylphosphonium bromide] and GYY4137 (morpholin-4-ium 4-

methoxyphenyl(morpholino) phosphinodithioate). AP39 is thought to directly target the 

mitochondria, and at while it is commercially available at this time, some labs synthesize it 

independently, and its molecular weight varies based on its source. Therefore it is likely not 

as reliable as the long-established GYY4137. GYY4137 was chosen for use because it is a 

synthetic, long-acting H2S donor that provides stable gas concentrations in aqueous solution 

over 24 hours, and is much more predictable than the salt-type donors [14]. GYY4137 is 

well-characterized, stable, has a longstanding history and has potential for clinical use for 

the treatment of necrotizing enterocolitis.

Before widespread clinical use, it is important to elucidate the mechanisms by which 

GYY4137 protects the intestine. In addition to histologic injury, NEC frequently causes 

alterations in inflammatory response and cytokine cascade in intestinal tissue [15]. 

Interleukin 6 (IL-6) has both inflammatory and anti-inflammatory properties, is modulated 

by NO in some tissues, and may protect intestine from injury [16, 17]. Interleukin 10 (IL-10) 

is a counterregulatory cytokine that inhibits propagation of inflammation, but is typically 

elevated in NEC models [18]. Interferon gamma-induced protein 10 (IP-10, also known as 

CXCL10) is a chemokine that acts as a chemoattractant for immune cells during times of 

injury [10, 19]. VEGF is an endothelium-specific angiogenic factor, released in endothelial 

cell injury [20]. These signaling molecules and many others are altered in intestinal injury 

and recovery and are important to evaluate with any potential treatment.

We hypothesized that GYY4137 as a hydrogen sulfide donor protects the intestine in 

experimental NEC through an eNOS-dependent pathway. Further, we hypothesized that this 

benefit is due to protection against injury specifically related to intermittent I/R injury, 

similar to our adult model.

MATERIALS AND METHODS

Animal Use

Indiana University Institutional Animal Care and Use Committee approved the experimental 

protocols and animal use. Male adult wild-type (WT) (C57BL/6J, Stock No: 00664, 8-12 

weeks/20-30g, Jackson Labs, Bar Harbor, ME) and eNOS knockout (eNOSKO) mice 

(B6.129P20Nos3tm1Unc/J, Stock No: 002684, 8-12 weeks/20-30g; Jackson Laboratory, Bar 

Harbor, ME) used in this study underwent 48 hours of acclimation after arrival prior to 

participating in experimentation. Normal chow and water were provided to the animals.

WT and eNOSKO mouse pups were bred in house from these animals and same-strain 

females. Experimental pups were separated from their mothers while controls remained with 

mothers to breastfeed. Experimental pups were kept in approved satellite housing for the 

duration of the experiment in a neonatal incubator with humidity 40% and temperature 

32°C.
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Experimental NEC Model:

A previously validated model of experimental NEC was utilized [8, 11, 21]. Briefly, 

experimental groups, both WT and eNOSKO (n=10), were permanently separated from their 

mother on postnatal day 5 (P5) through the end of the protocol on postnatal day 9 (P9). Both 

control groups (n=10) remained with their mother and breastfed ad libitum. Experimental 

groups were gavage fed with a 2 French catheter three times daily with 300 kcal/kg/day of 

hyperosmolar formula with 8 mg/kg lipopolysaccharide (lipopolysaccharides from 

Escherichia coli O111:B4, Sigma-Aldrich Company LLC, Dorset, UK). Formula was 

prepared using 4g of Esbilac canine supplement and 6g Similac with 20 mL of nanopure-

filtered water (Barnstead Nanopure, APS Water Services Inc., Van Nuys, CA). Prior to each 

feeding, pups were placed in a chamber with 5% O2 and 95% N2 for 10 minutes. After the 

morning and evening feed, pups were placed in the 4°C refrigerator for 10 minutes.

Each morning, experimental groups received intraperitoneal injections of either phosphate 

buffered saline (PBS) vehicle or a 50 mg/kg of GYY4137 in PBS. Total volume of each 

injection was 10µL. Control groups did not receive any injections. The GYY4137 dose was 

based on our previous work and other animal models of ischemia and reperfusion injury 

[22]. Pups were excluded if they died within 24 hours of the beginning of the study because 

death was likely secondary to a technical error of gavage feeding rather than NEC itself. If 

they died later than 24 hours and were identified immediately, they were still included in 

analysis for all data points including tissue evaluation.

Clinical Assessment:

Control groups were assessed daily, while experimental groups were assessed with each 

feed. Pups were assessed in a systematic fashion with a clinical assessment score to ensure 

consistency [8]. This is performed in a semi-blinded fashion as the observer is not aware of 

the pup’s treatment before scoring the pup, but then must find out the group before recording 

the data. The reported clinical assessment score was the pup’s last score prior to death or 

euthanasia.

Ischemia-Reperfusion (I/R) Injury Model

The I/R model was carried out on separate adult mice as previously described [10, 23, 24]. 

Adult mice (n=6 per group) were anesthetized with 3% isoflurane and maintained under 

anesthesia with 1.5% isoflurane in oxygen. Hair was removed and the abdomen was prepped 

in a sterile fashion. Subcutaneous 0.9% saline (1mL) was injected pre-operatively to 

compensate for fluid losses. Analgesia was provided pre-operatively with 1mg/kg 

buprenorphine and 5mg/kg carprofen via subcutaneous injection.

A midline laparotomy was performed and the intestines were eviscerated. The base of the 

mesentery was temporarily occluded with an atraumatic vascular clamp. The intestines were 

replaced and the abdomen was temporarily closed with silk suture to prevent fluid losses. 

After 60 minutes, the abdomen was reopened and the microvascular clamp was removed. 

The abdomen was then closed with a two-layer technique with silk suture. Prior to 

abdominal closure, animals received intraperitoneal administration of PBS (vehicle control), 
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or 50 mg/kg GYY4137 in PBS. Total volume of each injection was 250µL. Animals were 

awakened from anesthesia, allowed to recover, and returned to animal housing.

Perfusion Analysis:

For NEC pups, intestinal perfusion was analyzed transcutaneously with a Laser Doppler 

Perfusion Imager (LDI; Moor Instruments, Wilmington, DE) as previously described [11]. 

This was performed on P5 and P9, and perfusion was expressed as a percentage of baseline 

perfusion on P5. For the adult mice, perfusion images were acquired during laparotomy at 

baseline, at initial clamping (to ensure successful occlusion), and after 24 hours of recovery 

[10]. Perfusion was expressed as a percentage of baseline.

Histological Injury Score:

Terminal ileum was resected following euthanasia of experimental groups and fixed for 24 

hours in 4% paraformaldehyde at 4°C. Tissue was subsequently dehydrated with 70% 

ethanol, paraffin-embedded, sectioned, and stained with hematoxylin and eosin. Histologic 

scoring was performed by two blinded observers using previously described methods [10, 

11].

For pup tissue, scores ranged from 0 to 4 [11]. 0 = normal intestine; 1 = some 

disarrangement of villus enterocytes, villus-core separation; 2 = significant disarrangement 

of villus enterocytes, villus-core separation down sides of villi, blunting of villi; 3 = 

epithelial sloughing of villi, loss of villi; 4= necrosis. A score of 2 or higher indicated 

presence of NEC, with 3 or higher indicating severe NEC.

The adult mouse tissue was scored using a well established adult scoring system as follows 

[10]: 0 = no damage; 1 = subepithelial space at the villous tip; 2 = loss of mucosal lining at 

the villous tip; 3 = loss of less than half of the villous structure; 4 = loss of more than half of 

the villous structure.

Intestinal Cytokine Analysis:

Terminal ileum was acquired and processed for proteins as previously described [10, 11, 24, 

25]. Tissue was snap frozen in liquid nitrogen and stored at −80°C. Tissue was thawed and 

homogenized with the Bullet Blender (Next Advance, Averill Park, NY) in RIPA buffer 

(Sigma, St. Louis, MO) with 1:100 dilutions of both phosphatase and protease inhibitors 

(Sigma, St. Louis, MO). After homogenization, samples were centrifuged at 12,000 rpm and 

supernatants were collected for further analysis. Total protein was quantified with the 

Bradford Assay using a spectrophotometer (VersaMax microplate reader, Molecular 

Devices, Sunnyvale, CA).

Murine IL-6, IL-10, IP-10, and VEGF were measured using ELISA (R&D Systems, Bio-

Techne Corporation, Minneapolis, MN) for the NEC pup samples and a Bio-Plex multiplex 

beaded assay system (Bio-Rad, Hercules, CA) for the adult mouse tissue. All ELISAs and 

multiplex assays were repeated. ELISAs were performed at 1:20 dilution and multiplex 

assays at 1:25 dilution. To account for variations in individual plates and assays, cytokines 
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were normalized to their respective vehicle controls for both WT and eNOSKO intestinal 

samples.

Statistical Analysis:

Ordinal data was reported using median and interquartile range. Continuous variables were 

reported as mean ± standard error of the mean (SEM). All non-parametric data was 

compared using the Mann-Whitney U test. GraphPad Prism 7 (GraphPad Software, La Jolla, 

CA) was used for all statistical analysis and figures. P values less than 0.05 were considered 

statistically significant.

RESULTS

GYY4137 reduces clinical severity of experimental NEC through an endothelial nitric oxide-
dependent mechanism.

In the WT pups, those treated with GYY4137 gained significantly more weight (4.0% ± 1.2) 

over the protocol than those in the vehicle group (0.6% ± 0.7, p=0.0280), while in the 

eNOSKO groups there was no difference between those treated with GYY4137 (0.8% ± 1.7) 

and vehicle (2.7 ± 1.17, p=0.3657). Clinical sickness scores demonstrated a similar result. 

The WT group treated with GYY4137 had a median score of 1 (95% CI= 0-2), while the 

vehicle group had a median score of 3 (2.75-5.25, p=0.0002). In the eNOSKO mice, there 

was no difference between the group treated with GYY4137 (4.5, 3-5.25) and vehicle (5, 

3-5.25, p=0.8259, Figure 1).

GYY4137 improves intestinal perfusion and reduces histologic injury through an 
endothelial oxide-dependent mechanism in experimental NEC.

WT pups treated with GYY4137 had a mean perfusion of 38.69% ± 2.02 compared to 

24.16% ± 4.45 in the vehicle group (p=0.0079). This same improvement was not noted in 

the eNOSKO mice, as similar perfusion in the GYY4137-treated (21.77% ± 5.89) and 

vehicle (28.26% ± 4.60) groups (p=0.6409) were noted (Figure 2).

A complementary pattern was noted in histologic injury scores, with a significant 

improvement in the WT pups after treatment with GYY4137 (1, IQR 1-1.625) compared to 

vehicle (2.5, IQR 1.5-3.0, p=0.0011). The eNOSKO group did not have the same results, 

with both the vehicle and GYY4137 groups having median scores of 2.25 (IQR vehicle: 

1.0-3.0, GYY4137: 1.9-3.0, p=0.7494). In terms of NEC severity, GYY4137 decreased the 

proportion of severe NEC from 30% to 0% in the WT group, but had no change on the 40% 

rate of severe NEC in the eNOSKO group (Figure 3).

GYY4137 improves intestinal perfusion and reduces histologic injury in an adult intestinal 
I/R injury model.

WT adult mice treated with GYY4137 after I/R injury had a mean perfusion of 79.74% 

± 15.07 compared to 25.59% ± 6.05 in the vehicle-treated group (p=0.0221). In the 

eNOSKO mice, there was no significant difference in intestinal perfusion between those 

treated with GYY4137 (51.62% ± 13.41) and vehicle (32.48% ± 8.08, p=0.2403, Figure 4).
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Similar results were seen in intestinal histologic injury. The WT mice demonstrated 

significantly improved mucosal injury scores after treatment with GYY4137 (2, IQR 

1.0-2.8) as compared to vehicle (4, IQR 2.0-5.0, p=0.0214). This benefit was not noted in 

the eNOSKO animals, with the GYY4137 group scoring 3 (IQR 2.0-4.0) and the vehicle-

treated group scoring 4 (IQR 3.3-4.6, p=0.0591, Figure 5).

GYY4137 alters the inflammatory cascade in experimental NEC and intestinal I/R injury 
models.

In the GYY4137-treated NEC groups, IL-6 was significantly higher in the WT animals 

(1.254 ± 0.083 folds of control) than the eNOSKO animals (0.839 ± 0.047 folds of control, 

p<0.0001). VEGF was significantly lower in the WT pups (0.733 ± 0.053 folds of control) 

compared to the eNOSKO animals (1.488 ± 0.140 folds of control, p<0.0001). Neither IL-10 

(WT: 1.084 ± 0.083 folds of control, eNOSKO: 0.884 ± 0.080 folds of control, p=0.0859) 

nor IP-10 (WT: 0.985 ± 0.073 folds of control, eNOSKO: 0.837 ± 0.134 folds of control, 

p=0.3306) were significantly different between the NEC groups.

For the I/R model, the GYY4137-treated groups had significantly lower IL-6 levels in the 

WT animals (0.115 ± 0.022 folds of control) compared to the eNOSKO animals (1.089 

± 0.428 folds of control). IP-10 was significantly lower in the WT animals as well (0.4231 

± 0.066 folds of control) compared to the eNOSKO animals (1.419 ± 0.254, folds of control, 

p<0.0001). VEGF similarly was decreased in the WT group (0.807 ± 0.065 folds of control) 

compared to the eNOSKO group (1.334 ± 0.180 folds of control, p=0.0090). IL-10 was not 

significantly different between the groups (Figure 6).

DISCUSSION

Hydrogen sulfide donors like GYY4137 have been shown to have benefit in preventing 

tissue injury from ischemia [5, 10, 22, 26, 27]. There are multiple theorized mechanisms for 

this benefit including H2S modifying the eNOS protein through sulfhydration and possibly 

other actions [28]. Increases in eNOS activity would lead to increased nitric oxide 

production, vasodilation, and protection from injury secondary to tissue ischemia. Herein, 

we have demonstrated loss of the beneficial effects of GYY4137 in eNOSKO mice, 

indicating that the compound works through the eNOS pathway.

In the NEC model, GYY4137 conveyed clinical benefit as demonstrated by increased weight 

gain and decreased sickness scores in the WT animals, but this effect was lost in the 

eNOSKO mice. It is likely that GYY4137 reduces bowel injury and allows for better 

nutrient absorption in the WT animals. Improved weight gain was lost in the eNOSKO 

animals, indicating that this protein plays a critical role in overall animal health during NEC. 

Clinical sickness scores were similar in the vehicle groups, which is confirmation of our 

previous work [29], but improvement after GYY4137 was only seen in the WT groups.

We noted that the WT NEC group treated with GYY4137 experienced improved mesenteric 

perfusion, and this effect was lost in the eNOSKO group. Based on previous research, we 

thought it likely that GYY4137 was working through eNOS to reduce injury to ischemic 

tissue [10, 26, 27, 30]. GYY4137, acting as an H2S donor, likely sulfyhdrates eNOS, 
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resulting in upregulation of NO production, vasodilation, and improvement of blood flow to 

threatened tissue [31]. Previous studies have demonstrated that endogenous NO is required 

for the vasorelaxant action of H2S to occur, which may explain why this benefit was not seen 

in the eNOSKO mice. [32]

NEC is a complex pathology with many factors at play, including, but not limited to gut 

immaturity, bacterial colonization and translocation, and hypothermic injuries. Because of 

this complexity, we isolated the intestinal ischemia aspect by using an intestinal I/R model to 

evaluate GYY4137. We noted the same findings of improved perfusion after treatment with 

GYY4137 in WT mice, but not in the eNOSKO mice. These findings support our theory that 

GYY4137 works to protect the intestine during NEC, at least in part, through eNOS-

dependent vasorelaxation and improved intestinal perfusion [32, 33].

In addition to improved perfusion, intestinal mucosal injury was limited in WT pups and 

adults treated with GYY4137. This beneficial effect was lost with genetic ablation of eNOS. 

Improved perfusion likely played a role in improved mucosal injury. However, H2S donors 

such as GYY4137 have antioxidant, anti-inflammatory, and anti-apoptotic properties [10, 

34, 35]. Therefore, it is possible that GYY4137 may also provide secondary protection by 

limiting oxidative stress and tissue injury at the mucosal level.

Interestingly, the cytokine and growth factor responses to GYY4137 were not identical in 

experimental NEC and the I/R model. In the I/R model, the WT animals treated with 

GYY4137 had significantly reduced levels IL-6, IP-10, and VEGF compared to the 

eNOSKO animals. In contrast, the NEC model had varying results, with significantly lower 

IL-6 and higher VEGF in the eNOSKO group compared to WT.

IL-6 is overall thought to be pro-inflammatory, but does have some noted protective and 

anti-inflammatory effects during NEC [15, 16]. In fact, our previous work in NEC has 

demonstrated decreases in IL-6 in experimental NEC, and a return to higher levels after 

treatment, suggesting that IL-6 may serve in a protective role during NEC [11]. In the I/R 

model, we have previously shown increases in IL-6 after injury and associated reductions in 

IL-6 levels after H2S donor therapy, suggesting that IL-6 may be detrimental in the I/R 

model. These previous findings are consistent with our results presented here [10]. The 

paradoxical response reinforces the fact that there are other factors involved in the 

development of NEC; intestinal I/R injury does not fully elicit the pathology. Additionally, 

the significant differences between the WT and eNOSKO animals in both models supports 

the theory that eNOS is involved in the action of GYY4137.

IL-10 was not found to be different in either the NEC model or the I/R model after treatment 

with GYY4137. This is likely because IL-10 acts as an anti-inflammatory cytokine, and in 

fact has been used in animal models to reduce intestinal injury [36]. While this is typically 

increased in NEC and other forms of intestinal inflammation [37], it does not appear to be 

dampened by GYY4137 in comparison to vehicle in either model for either strain. It is likely 

that this is because GYY4137 is acting through modulation of mesenteric perfusion via 

endothelial nitric oxide, and that its anti-inflammatory and antioxidant effects are less 

important in these models.
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IP-10 is a chemoattractant for macrophages and other immune cells, and therefore it is 

understandable that levels would increase in an intestinal injury state [38]. In the I/R model, 

treatment with GYY4137 led to the WT mice having a much lower concentration of IP-10 

than the eNOSKO mice, but in the NEC model there was no difference between these 

groups. These findings reinforce the idea that while the I/R injury model is clean and 

precise, experimental NEC in neonates has a more complex pathophysiology. In previous 

animal NEC experiments, macrophages have been shown to dominate neonatal intestinal 

infiltrates, while in mature mice the recruited leukocytes are more varied [39]. This could 

potentially contribute to the reason that IP-10 does not decrease in response to GYY4137 in 

experimental NEC.

Finally, VEGF has an intimate relationship with intestinal inflammation and eNOS. This 

growth factor induces vascular permeability and angiogenesis in response to inflammation, 

but its effects are dependent on the presence of endothelial NO [20]. We noted significantly 

higher VEGF in the setting of eNOS ablation after GYY4137 treatment, and this is likely 

from upregulation of VEGF in the setting of injury without eNOS. This also supports our 

theory that GYY4137 is acting predominantly through eNOS to support vasodilation and 

improve mesenteric perfusion, rather than through direct anti-inflammatory and antioxidant 

effects of the compound.

GYY4137 has promise as a stable, long-acting H2S donor that works through eNOS to 

protect against intestinal injury. It likely works at least partially through direct protection 

against ischemia and reperfusion injury, but other factors are involved as well, as indicated 

by differing aberrations in the inflammatory response. While the involvement of eNOS is 

clear, the exact nature of the substances’ interactions warrants further investigation.

LIMITATIONS

Our previous work has demonstrated some baseline differences in the WT and eNOSKO 

mice, which may affect results [29]. For this reason, values are normalized to their respective 

controls as much as possible to reduce variability among strains. Additionally, the NEC 

model approximates human NEC, but is certainly not a true representation of this complex 

disease process in humans. The model is especially difficulty in that the diagnosis cannot be 

established until after euthanasia. Our rate of NEC is about 70%, as demonstrated in our 

previous work, and this is consistent with the published model that we are emulating [8]. 

Despite these shortfalls, it is the best studied animal model available for the study of NEC.

CONCLUSION

GYY4137 is a beneficial treatment option in experimental NEC, where it works through an 

eNOS-dependent pathway. Given that GYY4137 was seen to improve intestinal perfusion in 

both the NEC pup model as well as the adult I/R model, it is likely that this compound 

works through eNOS to promote vasodilation of the mesenteric vessels. Improved perfusion 

likely portrays less mucosal injury and improved intestinal inflammation following injury. 

Further investigation is needed to determine the specific molecular interactions of GYY4137 

and eNOS prior to widespread clinical use.
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Figure 1: GYY4137 improves weight gain and clinical status in WT animals, but not in eNOSKO 
animals.
A) The WT NEC group experienced significantly higher percent weight gain than its vehicle 

control, while this effect was not noted in eNOSKO mice. B) The clinical sickness score was 

improved in the WT NEC group treated with GYY4137, but this effect was not seen with 

ablation of eNOS (*: p<0.05 vs. vehicle group).
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Figure 2: Intestinal perfusion was improved after treatment with GYY4137 in the WT animals, 
but this effect was not seen in the eNOSKO group.
A) Perfusion on P9, expressed as a percentage of baseline perfusion (P5) was improved in 

the WT group treated with GYY4137, but there was no difference in the eNOS groups (*: 

p<0.05 vs. vehicle group). B) Representative images obtained with the LDI – the left side of 

each image is the pelvis and the right is the diaphragm. Red indicates areas of better 

perfusion and blue indicates poor perfusion.
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Figure 3: Intestinal injury is less severe in WT NEC animals treated with GYY4137, but there is 
no change with GYY4137 treatment in the eNOSKO animals.
A) Histologic injury scores are improved in the WT NEC group treated with GYY 4137 (*: 

p<0.05 vs. vehicle group). B) The proportion of severe NEC is improved in the GYY4137-

treated WT animals from 30% to 0%, while there is no change in the eNOSKO animals. C) 

Representative histology images demonstrating sloughing villi and destructed architecture in 

the vehicle groups and the eNOSKO group treated with GYY4137, with relatively normal 

villous structure in the GYY4137-treated WT group only.
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Figure 4: Mesenteric perfusion is improved after GYY4137 treatment in an WT adult mice after 
I/R, but this effect is not seen in eNOSKO mice.
A) Perfusion, expressed as a percentage of baseline perfusion, is significantly improved in 

WT mice treated with GYY4137 compared to vehicle, but this effect is lost with eNOS 

ablation (*: p<0.05 vs. vehicle group). B) Representative images from the LDI 

demonstrating improved perfusion only in the WT group treated with GYY4137. The 

intestines are eviscerated for these photos, and a region of interest is created around the 

loops. Red indicates good perfusion, and blue indicates poor perfusion.
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Figure 5: GYY4137 reduces intestinal injury in WT animals treated with GYY4137 after I/R, 
but does not affect injury in eNOSKO animals.
A) Histologic injury scores were significantly improved in the WT I/R group treated with 

GYY4137, but no similar effect was noted in eNOSKO animals (*: p<0.05 vs. vehicle 

group). B) Representative histology sections of the 4 groups, demonstrating very deranged 

villous architecture in both vehicle groups and the eNOSKO group treated with GYY4137. 

Only the WT animals treated with GYY4137 retain a semblance of normal bowel structure.
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Figure 6: Cytokine and growth factor aberrations are affected by treatment with GYY4137 after 
experimental NEC and I/R injury models.
Cytokine and growth factor changes with eNOS ablation in GYY4137 treatment of 

experimental NEC (A) and ischemia reperfusion injury model (B). Black bars represent WT 

mice and grey bars represent eNOSKO mice. Values are expressed as fold change of the 

vehicle treated group to normalize among different plates and animal strains for comparison.
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