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Abstract

Intestinal ischemia is a devastating intraabdominal emergency that often necessitates surgical 

intervention. Mortality rates can be high, and patients who survive often have significant long-term 

morbidity. The implementation of traditional medical therapies to prevent or treat intestinal 

ischemia have been sparse over the last decade, and therefore, the use of novel therapies are 

becoming more prevalent. Cellular therapy using mesenchymal stromal cells is one such treatment 

modality that is attracting noteworthy attention in the scientific community. Several groups have 

seen benefit with cellular therapy, but the optimal cell line has not been identified. The purpose of 

this review is to: 1) Review the mechanism of intestinal ischemia and reperfusion injury, 2) 

Identify the mechanisms of how cellular therapy may be therapeutic for this disease, and 3) 

Compare various MSC tissue sources to maximize potential therapeutic efficacy in the treatment 

of intestinal I/R diseases.
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INTRODUCTION

Intestinal ischemia stems from diverse etiologies and affects patient populations of varying 

ages and comorbidities. Necrotizing enterocolitis (NEC) and volvulus are two 
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manifestations of intestinal ischemia and necrosis in the neonatal population. The mortality 

rate associated with the most severe cases of NEC is quite high, particularly in the very low 

birth weight pre-term infants (1). Midgut volvulus from malrotation occurs far less 

frequently, but carries a significant mortality risk when the bulk of the bowel is affected (2). 

Acute Mesenteric Ischemia (AMI) is an intraabdominal emergency involving 

thromboembolic occlusion of mesenteric perfusion that primarily affects the elderly 

population and those undergoing cardiac bypass surgery. The mortality rate for AMI can be 

as high as 40% for those necessitating endovascular surgical intervention to lyse the clot and 

salvage the ischemic tissue (3). Ischemic bowel from incarcerated hernias and bowel 

obstructions secondary to adhesions also are prevalent in all populations.

Although ischemia from volvulus, AMI, and bowel obstructions can be relieved, ischemia 

from NEC usually cannot be altered. Regardless of etiology, severe intestinal ischemia can 

result in bacterial translocation across the damaged epithelium and free radical generation 

(4). Left untreated, these patients can rapidly decompensate and progress to shock, multi-

system organ failure and death. If patients survive the ischemic episode, surgical resection of 

necrotic tissue often results in short bowel syndrome and the need for long term parenteral 

nutrition (5).

Few noteworthy advancements in the medical treatment of intestinal ischemia have been 

made over the last few decades. While anticoagulation therapy initiated after surgical 

resection of necrotic bowel has been shown to minimize the risk for subsequent infarcts, 

long-term survival outcomes have not improved (6). Therefore, mesenchymal stromal cell 

(MSC) therapy offers a novel therapeutic option for the treatment of this disease. Studies 

have observed the capacity of MSCs to attenuate ischemic intestinal injury through 

enhanced restitution of intestinal mucosa, reduced bacterial translocation from the lumen 

into circulation, and attenuation of the inflammatory response (7–9). While stromal cells 

derived from various tissues present similar basic biological features, disparities in 

expansion potential and immunomodulatory properties exist (10). Although stromal cell 

therapy suggests promise in the treatment of intestinal ischemia, identification of the optimal 

cell isolate must be made prior to widespread therapeutic implementation. The purpose of 

this review article is to: 1) review the mechanism of intestinal ischemia and reperfusion 

injury, 2) identify the mechanisms of how cellular therapy may be therapeutic for this 

disease, and 3) compare various MSC tissue sources to maximize potential therapeutic 

efficacy in the treatment of intestinal I/R diseases.

MECHANISM FOR INTESTINAL ISCHEMIA-RELATED INJURY

The initial phase of ischemic intestinal injury involves depletion of oxygen and disruption of 

normal epithelial barrier function. While enterocytes are relatively resistant to transient 

hypoxic conditions, long term occlusion of blood supply can result in irreversible cell death. 

Dying enterocytes release cell contents into the extracellular matrix, which bind to immune 

cells provoking the inflammatory response. These cellular constituents, referred to as 

damage-associated molecular patterns (DAMPs), include nucleic acids, heat-shock proteins 

and high-mobility group box chromosomal protein 1 (HMGB1) (11). Hypoxia-induced 

destruction of enterocytes also results in the disruption of paracellular tight junctions (12).
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The failure of the epithelial barrier allows translocation of microbes and their products, 

referred to as pathogen associated molecular patterns (PAMPs), from the lumen into the 

lamina propria, thereby triggering inflammation. Ischemia also prompts the activation of 

transcription factors vital to hypoxia adaptation. One such factor, hypoxia-inducible factor 

(HIF), is stabilized under hypoxic conditions and upregulates genes for anaerobic 

metabolism (13, 14), angiogenesis (15), and inflammation attenuation(16).

Reestablishment of blood flow by surgical or endovascular bypass, or by medicinal 

dissolution of thrombus can further aggravate the ischemic bowel through reperfusion injury 

and the generation of reactive oxygen species (ROS) (17). During hypoxia, many 

mitochondrial enzymes, including cytochrome oxidase and manganese superoxide 

dismutase, decrease in activity due to a lack of a final electron acceptor for oxidative 

phosphorylation (18, 19). The loss of cytochrome oxidase activity prevents normal oxidative 

phosphorylation upon reoxygenation, and results in the production of ROS by more 

proximal mitochondrial complexes (20, 21). ROS generated in ischemia and reperfusion 

(I/R) injury alter signal transducers, peroxidize membrane lipids, oxidize DNA, and denature 

enzymes (22, 23). These ROS-mediated cellular alterations trigger apoptosis, resulting in 

further disruption of the intestinal barrier, endothelial dysfunction and inflammation (24).

The most significant component of intestinal I/R injury involves systemic activation of the 

inflammatory cascade, which in turn can trigger multi-organ failure and death. The I/R 

injury to the intestinal epithelium allows for the accumulation of PAMPs and DAMPS in the 

lamina propria (25). Toll-like receptors (TLRs) expressed on cells of the innate immune 

system bind to these molecules and trigger activation of the local inflammatory response 

through induction of transcription factors, which include nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB), activator protein 1 (AP-1), and mitogen-activated 

protein kinase (MAPK) (26–28).

These transcription factors activate genes associated with the production of cytokines, 

interferons (IFNs), chemokines, cell adhesion molecules and chemokine receptors (29). The 

key mediators of the initial inflammatory response are interleukin-1 (IL-1) (30), tumor 

necrosis factor-alpha (TNF-α) (12), and platelet activating factor (PAF) (31). These 

mediators promote complement activation in addition to the chemotaxis, transmigration, and 

activation of circulating leukocytes. Upon entry to the damaged tissue, these leukocytes 

trigger the production of multiple other cytokines and inflammatory mediators, including 

IL-6, IL-8, IL-17, IL-18, thromboxanes, leukotrienes, prostaglandins, nitric oxide (NO), 

enodothelin-1, and additional ROS (32–36). If counter-regulatory responses are insufficient, 

accelerated apoptosis of intestinal epithelial cells and disruption of paracellular tight 

junctions will further facilitate tissue damage ultimately resulting in multi-organ failure and 

death.

MECHANISM OF STROMAL CELL MEDIATED INTESTINAL PROTECTION

Mesenchymal stromal cell therapy has shown remarkable potential in the treatment of end 

organ ischemia. Following intestinal injury, these cells promote increased functional 

recovery and accelerated mucosal restitution, while simultaneously limiting inflammation, 
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suppressing the host immune system, and promoting free radical scavengers (Figure 1). 

While the exact mechanism by which MSCs ameliorate I/R injury is multifactorial and not 

yet defined, three primary mechanisms have been suggested. Once MSCs are activated, they 

can either differentiate into intestinal cell types, fuse with pre-existing cells, or secrete 

various bioactive factors that act in an autocrine or paracrine manor to attenuate damage 

following injury.

CELLULAR DIFFERENTIATION

MSCs can be isolated from almost every type of tissue in the body and possess a multipotent 

ability to differentiate into various cell lineages. Not only are they able to differentiate into 

mesodermal lineages, like adipocytes and osteocytes (37), but they have also demonstrated 

the capacity to differentiate into a multitude of diverse cell lines found throughout the 

human body, including hepatocytes (38), pancreatic islet-like cells (39), neuron-like cells 

(40), and epidermal cells (41). This characteristic resulted in the initial hypothesis that upon 

entry into damaged tissue, transplanted MSCs engraft and differentiate into the phenotype of 

the injured tissue, restoring the diseased organ with healthy, functioning cells.

Theoretically, cellular differentiation of MSCs within the damaged bowel would result in re-

established morphological integrity of the intestinal mucosa and reduced mucosal 

permeability. While differentiation has been demonstrated in animal models of acute 

myocardial infarction (42), acute renal failure (43), dermal wound repair (44), gastric 

perforation (45), and chronic lung injury (46, 47), little evidence suggests that this is the 

primary mechanism by which MSCs attenuate intestinal I/R injury. In a study by Brittan and 

colleagues, bone marrow derived MSCs (BM-MSCs) migrated to the intestinal lamina 

propria and differentiated into myofibroblasts to provide a framework upon which intestinal 

tissue regeneration following irradiation could take place (48). While this study suggests that 

native BM-MSCs can home to areas of damage and promote tissue regeneration through 

cellular differentiation, there is little auxiliary evidence supporting this mechanism of action. 

As a whole, the notion that MSCs provide therapeutic efficacy via stromal cell 

differentiation within regenerating tissue has been widely phased out.

HETEROTOPIC CELL FUSION

Heterotopic cell fusion involves the merging of two cells from different lineages. With 

regards to MSC-mediated tissue repair, it results in the introduction of the nucleus or 

functional genes from the stromal cell into a degenerating cell, so as to protect and restore 

the dying cell’s activity. Inflammation triggers the migration of BM-MSCs to areas of 

damage and stimulates an increase in the frequency of heterotopic fusion between the BM-

MSCs and differentiated resident cells within the tissue (49). Cell fusion reactions following 

administration of BM-MSCs have been observed with hepatocytes, Purkinje neurons, and 

cardiac myocytes. It has been postulated that these newly formed multinucleated cells are 

preferentially selected for survival, able to withstand a greater degree of stress, and promote 

tissue homeostasis.

With regards to intestinal regeneration following damage, the data regarding heterotopic cell 

fusion are conflicting. Multiple studies have observed the fusion of transplanted BM-MSCs 
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with intestinal epithelial cells and undifferentiated intestinal progenitor cells following 

radiation induced damage (50, 51). However, de Jong and colleagues observed that BM-

MSC and intestinal cell fusion events were extremely rare, if present at all, and irrelevant to 

the regeneration and homeostasis of damaged intestinal tissue (52). Even if cell fusion 

between BM-MSCs and intestinal epithelial cells does occur, it is unclear whether this 

fusion provides significant benefit. More work needs to be done to elucidate the therapeutic 

efficacy of heterotopic fusion in stromal cell mediated intestinal protection.

PARACRINE MEDIATORS

Growing evidence favors the paracrine mechanism of MSC-mediated organ protection 

(Figure 2). While cellular differentiation and heterotopic cell fusion events have been 

observed, the secretion of anti-inflammatory and pro-regenerative factors by MSCs results in 

the greatest modification of tissues following I/R insult. Numerous studies have suggested 

that applying cell free media that has been conditioned by stromal cells provides equivalent 

protection as the cells themselves (53–57), suggesting that the paracrine factors produced by 

the cells in the conditioned media are what drive the therapeutic efficacy of MSCs within 

damaged tissue. Additionally, the rate of transplanted stromal cell engraftment and survival 

is so low that cellular differentiation and fusion events are likely too few to directly 

influence recovery of tissue function (58). Furthermore, multiple studies have appreciated 

post-injury improvements in tissues located elsewhere from where MSCs engrafted, 

suggesting that MSC homing to the actual site of I/R damage is not mandatory for 

therapeutic efficacy (59–61). Therefore, the primary mechanism by which MSCs appear to 

combat the progression of intestinal I/R damage is via a multifactorial paracrine-mediated 

process, in which immunomodulation, tissue restoration, and ROS scavenging occurs.

IMMUNOMODULATION—MSC paracrine mediators appear to play a role in the 

attenuation of the inflammatory response generated by intestinal I/R injury. The induction of 

transcription factor NF-kB following insult regulates the production of pro-inflammatory 

cytokines by activated macrophages and other cells of the innate immune system. Various 

studies have observed the capacity of MSCs to decrease the activation of NF-kB in animal 

models of intestinal I/R injury (8, 62). Subsequently, MSC therapy has been associated with 

decreased levels of proinflammatory cytokines, particularly TNF-α (8, 63), IL-1β (63), and 

IFN-γ (64). These changes favor T cell differentiation into Th2 and T regulatory cell types, 

minimize inflammatory mediated intestinal destruction, and decrease the risk of systemic 

sepsis. Additionally, reduced TNF-α levels were seen to enhance expression of intestinal 

tight junction proteins, thereby resulting in decreased intestinal permeability and preserved 

mechanical barrier function (65).

Studies have also observed increased production of anti-inflammatory cytokines in I/R 

injured tissues treated with MSCs. One of the anti-inflammatory cytokines, IL-10, was 

observed to block NF-kB signaling, downregulate the expression of Th-1 inflammatory 

cytokines, and moderate COX-2 activation. While elevated IL-10 levels were initially 

believed to be made from the MSCs (66–68), studies now suggest that IL-10 may be 

produced by monocytes that were stimulated to differentiate by MSCs (69). Melief and 

colleagues observed that an elevation in MSC derived IL-6 triggered the differentiation of 
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monocytes to IL-10 secreting macrophages (70). MSC immunomodulation in intestinal I/R 

injury through increased production of anti-inflammatory cytokines and decreased synthesis 

of inflammatory mediators minimizes intestinal damage and reduces the risk for multi-organ 

failure and death.

TISSUE RESTORATION—Through the release of various bioactive factors, MSCs 

facilitate angiogenesis, inhibit apoptosis, alter the coagulation cascade (71), and stimulate 

resident intestinal stromal cells to proliferate and restore necrotic tissue. Upon entering 

hypoxic environments, MSCs upregulate mRNA expression of numerous growth factors, 

including vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF2), and 

transforming growth factor-β (TGF-β), resulting in enhanced tissue restoration (72). The 

upregulation in growth factor expression is believed to be mediated by a p38 mitogen-

activated protein kinase (MAPK)-dependent mechanism (73).

Each growth factor modulates various parts of the healing process and their beneficial effects 

are multifactorial. VEGF and FGF2 are key promoters of angiogenesis following acute 

ischemia and inflammation (74–76), and appear to enhance MSC survival upon 

transplantation (77, 78). TGF-β appears to be a key mediator of tissue remodeling, and 

enhances the expression of tight junction proteins to restore the intestinal barrier (79). IL-6, 

traditionally thought of as an acute phase reactant, may actually be protective to the gut 

during the inflammatory response. Several studies have suggested that it promotes intestinal 

hyperplasia and prevents cell death (80, 81). While other paracrine mediators have been 

observed in other models of I/R injury, these growth factors have been the most extensively 

demonstrated in models of intestinal insult.

In addition to growth factor production, MSCs have been shown to secrete growth factor-

containing exosomes into the extracellular milieu. The exosomes bind to target cells in the 

extracellular space and either alter target cell signaling or unload their vesicular contents into 

the target cell cytoplasm (82). Studies analyzing the alterations generated by MSC exosomal 

contents have observed enhanced angiogenesis and epithelial and endothelial wound healing 

in target tissues (83, 84). With regards to intestinal injury, Rager and colleagues appreciated 

improved functional recovery of the bowel wall in a murine model of NEC conferred by 

MSC-derived exosomes administered intraperitoneally in a cell-free medium (85). These 

studies further support the paracrine model of MSC restitution of ischemia-damaged tissues.

ANTI-OXIDANT PROPERTIES—While the reestablishment of blood flow to ischemic 

bowel is vital to salvaging the tissue, the generation of reactive oxygen species adds insult to 

injury. Stromal cells have been observed to produce various antioxidant enzymes that work 

to fight the accumulation of these oxygen free radicals. Superoxide dismutase, catalase, and 

glutathione peroxidase are highly expressed by stromal cells and work collectively to 

convert oxygen free radicals to water and oxygen (86, 87). In scavenging ROSs and 

converting them to innocuous particles, stromal cells prevent further disruption of the 

intestinal barrier, decrease endothelial dysfunction and minimize inflammation.
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FINDING THE OPTIMAL STROMAL CELL ISOLATE FOR THERAPY

Adult MSCs are believed to reside in all tissues and organs (88), and show unique promise 

with regards to autologous and allogeneic transplant in various models of ischemia. While 

MSCs isolated from bone marrow (BM-MSC), adipose (AT-MSC), umbilical cords (UC-

MSC), and placentas (PT-MSC) have been the most well-studied and are more easily 

sequestered, human MSCs have also been isolated from the intestines, skin, kidney, heart, 

spleen, dental pulp, nasal mucosa, trachea, prostate stroma, limbal stroma, and synovial fluid 

in the knee joint (89, 90).

According to the Mesenchymal and Tissue Stem Cell Committee of the International Society 

for Cellular Therapy, MSC classification necessitates the expression of CD73, CD90, 

CD105 surface molecules, and lack of expression of CD34, CD45, CD11b or CD14, CD19 

or CD79α and HLA-DR (91). Additionally, the cell must be adherent to plastic when 

cultured in standard conditions and able to differentiate into osteoblasts, adipocytes, and 

chondroblasts in vitro.

Compared to embryonic stem cells (ESCs), which present significant ethical limitations, and 

induced pluripotent stem cells (iPSCs), which possess significant safety concerns for 

malignant trasnformation, adult and birth-associated tissue MSCs have shown the most 

promise with regards to translational stem cell therapy over the last decade. MSCs isolated 

from each tissue type display unique properties with regards to immunogenicity and 

differentiation potential (Table 1), so an understanding of each tissue-specific MSC isolate is 

vital to studying their effect in various models of I/R injury.

BONE MARROW MSCs

Bone marrow derived MSCs (BM-MSCs) have been the most widely studied source of 

mesenchymal stromal cells to date. Clinical transplantation of BM-MSCs appear to be well 

tolerated and play a significant role in immunosuppression (92–94). Although no clinical 

trials to date have studied the use of BM-MSCs in intestinal ischemic injury, many studies 

have observed improved functional recovery outcomes following autologous BM-MSC 

transplantation in patients with myocardial infarction (95–98). Additionally, a commercial 

allogeneic BM-MSCs product, Prochymal, has shown improved functional recovery 

following MI, suggesting the potential use of BM-MSCs as a commercial, off-the shelf 

product for intestinal ischemic injury (99).

While no clinical data exists yet supporting BM-MSC treatment in patients with intestinal 

ischemia, many studies using animal models have shown great promise. Markel and 

colleagues observed that administration of human BM-MSCs after sixty minutes of ischemia 

in mouse models of intestinal I/R injury improved survival outcomes and resulted in the 

production of high levels of growth factors and lower levels of proinflammatory chemokines 

(7). Other groups have also shown benefit to BM-MSCs in mouse models of intestinal 

ischemia (100, 101). Studies using rat-derived BM-MSCs in a rat model of intestinal I/R 

injury observed improved integrity of the intestinal mucosa, reduced translocation of 

bacteria from the lumen into circulation, and a decreased inflammatory response (8, 9).
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While extensive data and experience favor BM-MSCs as the optimal cell isolate to use in the 

progression towards clinical trials, there are significant disadvantages to consider. First, bone 

marrow aspirations to isolate BM-MSCs are invasive and painful, making the process less 

desirable for allogeneic donors and autologous transplant patients. Bone marrow isolates 

would also not be feasible in the most premature of patients with intestinal ischemia. 

Additionally, the yield of BM-MSCs from the aspirate is relatively low compared to all other 

nucleated cells, and the frequency declines even more so with age (102). Furthermore, the 

proliferative potential of BM-MSCs pales in comparison to other MSC isolates (103). These 

attributes of BM-MSCs are the primary reason alternative tissue MSCs are now under 

investigation.

ADIPOSE TISSUE MSCs

Since Zuk and colleagues first isolated MSCs from lipoaspirates in 2001 (104, 105), the use 

of adipose tissue-derived MSCs (AT-MSCs) in regenerative medicine studies has grown 

more than any other tissue type over the last decade. Numerous attributes make AT-MSCs 

favorable in comparison to other MSCs. AT-MSCs show greater proliferative potential than 

other MSC isolates, and with the incidence of obesity steadily rising, their ease of 

accessibility and limitless supply via liposuction of subcutaneous adipose tissue make them 

an ideal candidate for widespread therapeutic use (106–109).

Studies using AT-MSCs in conjunction with animal models of intestinal I/R injury have 

shown great promise. Allogeneic rat AT-MSC transplantation appears to attenuate intestinal 

I/R injury through the suppression of inflammation and ROS generation (110). Additionally, 

improved survival outcomes have been observed in murine models that were administered 

human AT-MSCs following I/R injury. These improved outcomes were associated with 

enhanced mesenteric perfusion, preservation of intestinal tight junctions and decreased 

systemic inflammation (111).

Clinical trials utilizing autologous or allogeneic AT-MSCs have shown improved outcomes 

in patients with various forms of end organ ischemia, including myocardial infarction (112), 

critical limb ischemia (113) and ischemic stroke (114). Clinical trials utilizing AT-MSCs for 

the treatment of intestinal ischemia have not yet been offered. However, human clinical trials 

utilizing AT-MSCs in Crohn’s and non-Crohn’s disease patients with perianal fistulas have 

shown both safety and efficacy. Although Crohn’s disease is not specifically an ischemic 

injury, it does involve full thickness inflammation of the intestinal wall and possible bowel 

perforations. Phase I and phase II trials using autologous AT-MSCs in combination with 

fibrin glue was both safe and effective in the treatment of complex perianal fistulas, and 

resulted in higher rates of healing than glue alone (115–117). While a phase III trial did not 

show statistically significant improvements, further studies are underway to better define 

ideal AT-MSC therapy candidates (118). It is also important to note that the intralesional 

injection of autologous AT-MSCs for perianal or rectovaginal fistulas associated with 

Crohn’s disease did not alter the ability to conceive, the course or outcome of pregnancy, or 

the newborn’s health in female patients (119). These observations add weight to the notion 

that AT-MSCs are safe for clinical use, and suggest that AT-MSCs could show great promise 

in clinical trials of intestinal ischemic injury.
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A notable primary benefit of using AT-MSCs as the cell of choice for clinical therapy is the 

high yield of cells from liposuction in adult patients undergoing autologous transplant. 

Nevertheless, limitations still exist, particularly with regards to neonates and underweight 

adult patients. The extraction of AT-MSCs necessitates a large enough storage of adipose 

tissue to prevent potential morbidity. Although this limits the potential use of autologous AT-

MSCs in these patient populations, it does not eliminate the potential use of allogeneic AT-

MSCs as an “off the shelf” source for therapy. The frequency of liposuction procedures in 

the general population provides for a potentially large cell bank for allogeneic transplant, 

thereby favoring AT-MSCs for widespread clinical use.

BIRTH-ASSOCIATED TISSUE MSCs

MSCs isolated from birth associated tissues, also referred to as perinatal tissues, primarily 

involve cells from the umbilical cord blood (UCB-MSCs), Warton’s Jelly (WJ-MSCs), 

amniotic fluid (AF-MSCs), and placenta (PL-MSCs). MSCs can also be found in the amnion 

and chorion; however, these cells have been studied less than their counterparts (120–122). 

Birth associated tissue MSCs present a unique MSC source in that these cells possess more 

primitive properties than MSCs isolated from adult tissues, and they can be obtained 

unobtrusively posing no risk to mother or baby. Studies using birth-associated MSCs in the 

treatment of animal models of intestinal ischemia are limited, but existing studies of these 

cells do show promise in limiting ischemic injury (101). These cells have shown promise in 

the treatment of other animal models of ischemic injury, including cerebral infarction (123) 

and hind limb ischemia (124). The potential value of these cells with regards to ease of 

accessibility and differentiation potential mandate consideration as a possible cell isolate for 

therapy for intestinal ischemia.

With regards to intestinal ischemia and necrosis, the use of autologous birth associated tissue 

MSCs appears to be most applicable in neonates with necrotizing enterocolitis. Since NEC 

primarily affects low birthweight pre-term infants, harvesting these tissues during delivery of 

high risk infants provides a practical, systematic designation for autologous MSC harvesting 

and transplant. Birth-associated tissue MSCs also present a unique tissue source for 

allogeneic transplantation because the majority of these tissues are discarded after delivery 

and their procurement is non-invasive (125). Therefore, an “off-the-shelf” product could 

more readily be developed for this particular cell isolate.

While MSCs can be isolated from most all birth associated tissues, UCB-MSCs, WJ-MSCs, 

AF-MSCs and placental-MSCs are the most studied. The primary disparity among these four 

cell isolates is MSC isolation efficacy from tissue harvest, with WJ-MSCs having 100% 

efficacy, AF-MSCs having approximately 90% efficacy, placental-MSCs having 62.5–100% 

efficacy, and UCB-MSCs having the least isolation efficacy of 60% at best (125). In addition 

to having the greatest isolation efficacy, WJ-MSCs also have the greatest expansion 

potential, suggesting that they may be the optimal birth-associated tissue MSC isolate with 

regards to ease of clinical translation (126). Placental MSCs may also have a slightly higher 

procoagulation effect (127), which may not be useful in the setting of an already ischemic 

intestine. Aside from differences in isolation efficacy, expansion potential, and coagulation 

profiles, all birth-associated tissue MSCs appear to have similar properties with regards to 
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differentiation potential and immunosuppressive capabilities, suggesting that all of these cell 

isolates have the potential to attenuate intestinal ischemia and reperfusion injuries.

COMPARATIVE ANALYSIS OF STROMAL CELL ISOLATES

IMMUNOMODULATORY PROPERTIES

The capacity of MSCs to exert anti-inflammatory and immunosuppressive effects in 

damaged tissues provides clinical value for patients with intestinal ischemic injuries. 

Through the release of various paracrine mediators and direct interaction with immune cells, 

MSCs suppress both the innate and adaptive immune responses to favor recovery and 

regeneration of tissue architecture (128, 129). The anti-inflammatory properties of MSCs 

minimize cytokine mediated damage to the intestinal epithelial barrier; thus, minimizing the 

risk for bacterial translocation and subsequent sepsis.

While all MSC isolates demonstrate some degree of immunomodulatory capabilities, 

differences with regards to the extent to which they subdue the immune response should be 

considered when assessing the optimal cell isolate to use for intestinal ischemia and necrosis 

injuries. Careful comparison of MSC alteration in T, B and NK cell activity is vital to 

understanding subsequent effects on cytokine production within the inflammatory milieu 

(130). Ribeiro and colleagues appreciated greater inhibition of B and NK cell activation by 

AT-MSCs compared to BM-MSCs, with minimal NK cell inhibition and no B cell inhibition 

by WJ-MSCs (131). They also observed AT-MSCs to have the strongest suppressive effects 

on T cell activation and proliferation.

Alternative studies assessing the relative effects of different MSC isolates on T cell 

proliferation have been less consonant. While Najar et al. corroborated the conclusion that 

AT-MSCs provided the greatest suppression of T cell proliferation (132), Li and colleagues 

observed the greatest decrease in T cell proliferation when these cells were cultured with 

WJ-MSCs, followed by PL-MSCs, AT-MSCs, and lastly BM-MSCs (133). They also 

appreciated that WJ-MSCs expressed the lowest level of HLA class II genes, compared to 

the other 3 populations of MSCs, with BM-MSCs expressing the highest level of HLA class 

II genes. These results suggest that WJ-MSCs may have the greatest T cell 

immunosuppressive potential, while simultaneously generating the least immunogenicity.

With regards to alterations in specific inflammatory cytokine levels, LPS-activated 

macrophages co-cultured with BM-, AT-, and UCB-MSCs exhibited decreased levels of 

inflammatory cytokines IL-1α, IL-6, and IL-8; however, only UCB-MSCs reached statistical 

significance (134). These results suggest that UCB-MSCs may exert a greater anti-

inflammatory effect than both AT and BM-MSCs.

EASE OF ISOLATION AND AMPLIFICATION FOR WIDESPREAD THERPEUTIC USE

The ultimate goal with MSC therapy in intestinal I/R injury is widespread autologous or 

allogeneic use. In order to accomplish prevalent implementation, one must consider the ease 

of MSC isolation from the donor tissue, and the ability of the cells isolated to amplify to 

large enough numbers to employ therapeutic benefit.
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For autologous MSC transplant, the isolation procedure that is least invasive and most 

tolerated by the patient would be preferred. This would favor the use of AT-MSCs in adults 

with acute mesenteric ischemia and birth-associated tissue MSCs in neonates with NEC or 

midgut volvulus. Pertaining to allogeneic transplant, birth-associated MSCs and AT-MSCs 

are the only MSC isolates that can be extracted from patient tissues that are normally 

discarded as medical waste, with birth-associated tissue being discarded following delivery 

and adipose tissue being discarded following routine liposuction. Additionally, cell yields 

from liposuction procedures generate significantly more MSCs than any other tissue specific 

MSC isolation procedure, making these cells the most widely available MSC isolate (135).

Prior to autologous transplant, MSCs must first be expanded ex vivo to sufficient numbers to 

provide maximal therapeutic benefit. The proliferation capacity of each tissue specific MSC 

varies and is evaluated using a colony forming unit-fibroblast assay or by doubling time. Li 

and colleagues observed WJ-MSCs had the shortest doubling time, followed by AT-MSCS, 

PL-MSCs, and lastly BM-MSCs (103). Since a shorter doubling time corresponds to a more 

rapid growth rate, this study suggests that WJ-MSCs and AT-MSCs have greater 

amplification potentials compared to PL-MSCs and BM-MSCs. Kern and colleagues 

appreciated the greatest expansion potential in UCB-MSCs with successful passages past P 

10, compared to BM-MSCs (P 7) and AT-MSCs (P 8) (10). Additional studies have 

confirmed that UCB-MSCs have the most rapid expansion potential with the lowest 

senescence profile of the MSCs (134). This allows for longer culture lifespans with UCB-

MSCs, thus generating a greater number of cells relative to initial MSC yields. While 

enhanced amplification and expansion potentials can compensate for lower initial cell yields, 

all three factors must be considered.

ATTENUATION OF INTESTINAL ISCHEMIA REPERFUSION INJURY

Although in vitro studies of immune suppression, growth factor production, and expansion 

and senescence are important in our understanding of MSCs for intestinal ischemia, what is 

most important is their efficacy in diminishing the effects of intestinal ischemia. A previous 

study by Watkins, et. al. compared the effectiveness of BM-MSCs and AF-MSCs in a model 

of intestinal I/R. They noted a significant decrease in histological injury score and intestinal 

permeability with cellular therapy, but noted no significant difference between these cells in 

terms of their effectiveness. Additionally, studies by our group examined BM-, AT-, and 

UCB-MSCs in a model of intestinal I/R injury. All MSCs improved survival, mesenteric 

perfusion, and histological architecture following injury as compared to differentiated 

cellular controls, but no difference was seen in these parameters between MSC cell isolates. 

These combined studies might suggest that differences in cellular niches may impact certain 

aspects of cellular function, but that ultimately, differences in harvest tissue source may not 

have a significant impact on overall outcomes following injury (Jensen, et al., in press, JSR).

CURRENT LIMITATIONS

SAFETY AND EFFICACY

Concerns regarding the tumorigenicity and malignant transformation potential of MSCs 

have plagued the progression of MSC treatment toward clinical trials. Studies first suggested 
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MSCs possess the potential to increase tumor burden due to their immunosuppressive effects 

(136). Additional concerns surround the immunsuppressive effects of MSCs and the 

potential for systemic infections. However, recent position papers on these topics have 

suggested a low probability for these concerns (137). A recent systematic review looking at 

36 clinical trials found no association between MSC administration and de novo tumor 

formation or increased susceptibility to infection (138). This meta-analysis suggests the 

potential benefit of MSC therapy outweighs the potential risk, and that these theoretical risks 

may be more insignificant than credited.

BARRIERS TO CLINICAL IMPLEMENTATION

Prior to 2008, MSC-based Investigational New Drug Submissions and MSC treatment in 

clinical trials solely involved allogeneic MSCs derived from the bone marrow. Since then, 

MSC tissue source has greatly diversified with growing emphasis on the use of adipose 

tissue and birth-associated tissue MSCs (139). The primary limitation to the progression of 

clinical trials using MSCs in the treatment of patients with intestinal I/R injury is a lack of 

complete understanding of the behavior and activity of the cells following administration in 

vivo. The majority of what is known about MSCs has been gathered by observing the cells 

ex vivo, and studies have appreciated significant microenvironment impact on MSC activity 

and therapeutic efficacy (140–143). Studies further elucidating the in vivo actions of MSCs 

in the microenvironment of intestinal ischemia are pivotal to the progression of MSC 

therapy in patients with these diseases.

Additionally, identification of the optimal mode of MSC administration must also be 

assessed prior to clinical implementation. Since the exact mechanism by which MSCs exert 

their effect has not be defined, variation in therapeutic efficacy based on route of 

administration is probable. Intravascular administration has been associated with lung 

trapping and the formation of possibly lethal microemboli (144). Additionally, intravascular 

administration may promote activation of the coagulation cascade, which can be alleviated 

with the simultaneous application of heparin (127, 145). If paracrine factors predominately 

mediate the therapeutic effects of MSCs, then differentiation between intravenous, intra-

arterial, intraperitoneal, and enema administration would favor the mode of administration 

that fostered the most conducive environment for MSC survival and proliferation. Further 

studies are still needed at this time to assess for variation in the ability of MSCs to attenuate 

intestinal ischemic injury based on the mode of administration so as to optimize stromal cell 

therapy moving forward.

Another key limitation to clinical use of MSCs in the treatment of intestinal ischemia and 

necrosis is the current lack of standardization for MSC isolation and preparation prior to 

administration. Srijaya and colleagues suggest one possible way to accommodate for these 

variables is by approaching MSC therapy in a way similar to conventional drug therapy, in 

which allogeneic MSC transplants could be an off the shelf product that can be optimally 

modulated to minimize these discrepancies (146). Even in patients receiving an autologous 

transplant, standardization of cell characteristics is vital to preserving consistency in patient 

treatment. Protocols must be established prior to clinical implementation to maximize MSC 

therapy effectiveness while minimizing treatment variability.
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Clinical trials studying MSC therapy for intestinal ischemia will be invaluable in answering 

many of the questions that still pervade treatment specificities. Identifying the optimal cell 

number needed for maximal therapeutic efficacy and the most effective route of 

administration should be assessed prior to widespread clinical implementation. Additionally, 

clinical trials involving the administration of the acellular MSC secretome should be 

evaluated concurrently since the release of paracrine mediators is likely the primary 

mechanism by which the cells exert their therapeutic effect.

CONCLUSION

Mesenchymal stromal cell therapy in patients with varying etiologies of intestinal ischemia 

and necrosis presents a novel medical treatment option that could potentially minimize 

intestinal injury and improve patient outcomes. Through immunomodulation and tissue 

restoration, MSCs enhance the functional recovery of the intestinal epithelial barrier, 

minimize bacterial translocation, decrease the inflammatory cascade, and reduce the risk of 

systemic shock, multi-organ failure, and death. With a growing body of literature supporting 

a multitude of MSC isolates in the attenuation of intestinal injury, careful analysis of the 

benefits and pitfalls of each tissue specific cell isolate is vital. Differences among BM-

MSCs, AT-MSCs, and birth-associated tissue MSCs with regards to their ability to attenuate 

intestinal injury, alter the immunomodulatory profile, and obtain and amplify quickly and 

effectively should be considered when selecting the optimal MSC isolate to use for 

therapeutic use.
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Figure 1. 
MSCs are thought to afford protection to ischemic bowel in a number of ways. Ultimately, 

they work to decrease inflammation, enhance gut restitution, and promote recovery of the 

injured bowel.
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Figure 2. 
MSCs are primarily thought to provide protection via the release of paracrine mediators. 

Injured intestines release proinflammatory signals which activate MSCs to release beneficial 

factors that can act in a paracrine fashion to facilitate recovery of the ischemic bowel.
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Table 1

Comparative Analysis Of Most Optimal MSC Isolate to Use for Therapy of Intestinal Ischemia (“X” denotes 

best isolate for the given category)

BM-MSCs AT-MSCs Birth Associated MSCs

Easily Isolated from Adults X

Easily isolated from Neonates X

Obtained from Discarded Tissue X X

Most Widely Studied X

Rapidly Expandable X

Least Senescent X

Highest Yield of Cells Obtained X

Lowest MHC II X

Most Immune Suppressive X X

Anti-Inflammatory Properties X

Greatest Protection in an In-Vivo I/R Model X X X
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