202 research outputs found

    Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer

    Get PDF
    We have studied temperature dependences of electron transport in graphene and its bilayer and found extremely low electron-phonon scattering rates that set the fundamental limit on possible charge carrier mobilities at room temperature. Our measurements have shown that mobilities significantly higher than 200,000 cm2/Vs are achievable, if extrinsic disorder is eliminated. A sharp (threshold-like) increase in resistivity observed above approximately 200K is unexpected but can qualitatively be understood within a model of a rippled graphene sheet in which scattering occurs on intra-ripple flexural phonons

    Microstructures Manufactured in Diamond by Use of Laser Micromachining.

    Get PDF
    Different microstructures were created on the surface of a polycrystalline diamond plate (obtained by microwave plasma-enhanced chemical vapor deposition-MW PECVD process) by use of a nanosecond pulsed DPSS (diode pumped solid state) laser with a 355 nm wavelength and a galvanometer scanning system. Different average powers (5 to 11 W), scanning speeds (50 to 400 mm/s) and scan line spacings ("hatch spacing") (5 to 20 µm) were applied. The microstructures were then examined using scanning electron microscopy, confocal microscopy and Raman spectroscopy techniques. Microstructures exhibiting excellent geometry were obtained. The precise geometries of the microstructures, exhibiting good perpendicularity, deep channels and smooth surfaces show that the laser microprocessing can be applied in manufacturing diamond microfluidic devices. Raman spectra show small differences depending on the process parameters used. In some cases, the diamond band (at 1332 cm-1) after laser modification of material is only slightly wider and shifted, but with no additional peaks, indicating that the diamond is almost not changed after laser interaction. Some parameters did show that the modification of material had occurred and additional peaks in Raman spectra (typical for low-quality chemical vapor deposition CVD diamond) appeared, indicating the growing disorder of material or manufacturing of the new carbon phase

    Parity Effect and Charge Binding Transition in Submicron Josephson Junction Arrays

    Full text link
    We reconsider the issue of Berezinskii-Kosterlitz-Thouless (BKT) transition into an insulating state in the Coulomb-dominated Josephson junction arrays. We show that previously predicted picture of the Cooper-pair BKT transtion at T = T_2 is valid only under the condition that T_2 is considerably below the parity-effect temperature (which is usually almost 10 times below the value of superconductive transition temperature), and even in this case it is not a rigorous phase transition but only a crossover, whereas the real phase transition takes place at T_1 = T_2/4. Our theory is in agreement with available experimental data on Coulomb-dominated Josephson arrays and also sheds some light on the origin of unusual reentrant temperature dependence of resistivity in the array with nearly-criticial ratio of Coulomb to Josephson energies.Comment: 4 pages, Revtex, to be published in JETP Letters, April 9

    Landau Level Splitting in Graphene in High Magnetic Fields

    Full text link
    The quantum Hall (QH) effect in two-dimensional (2D) electrons and holes in high quality graphene samples is studied in strong magnetic fields up to 45 T. QH plateaus at filling factors ν=0,±1,±4\nu=0,\pm 1,\pm 4 are discovered at magnetic fields B>B>20 T, indicating the lifting of the four-fold degeneracy of the previously observed QH states at ν=±(n+1/2)\nu=\pm(|n|+1/2), where nn is the Landau level index. In particular, the presence of the ν=0,±1\nu=0, \pm 1 QH plateaus indicates that the Landau level at the charge neutral Dirac point splits into four sublevels, lifting sublattice and spin degeneracy. The QH effect at ν=±4\nu=\pm 4 is investigated in tilted magnetic field and can be attributed to lifting of the spin-degeneracy of the n=1n=1 Landau level.Comment: 11 pages including 4 figures, to appear in PR

    The use of microsatellite polymorphism in genetic mapping of the ostrich (Struthio camelus)

    Get PDF
    The aim of this study was to determine microsatellite polymorphism in ostriches and using it in creation the genetic map of the ostrich. The polymorphism analysis covered 30 microsatellite markers characteristic of ostrich, for the CAU (China Agricultural University) group. The material consisted of 150 ostriches (Struthio camelus). The 30 microsatellite loci was examined and a total of 343 alleles was identified. The number of alleles at a single locus ranged from 5 at locus CAU78 to 34 at locus CAU85. The values for the observed heterozygosity Ho ranged from 0.467 (locus CAU78) to 0.993 (locus CAU16), whereas for the expected heterozygosity He - from 0.510 (locus CAU78) to 0.953 (locus CAU85). Analyzing the individual loci, the highest PIC value, more than 0.7 was observed for: loci CAU85 (0.932), CAU64 (0.861) and CAU32, 75 (0.852), respectively. It should be noted, that the microsatellite markers used in our study were very polymorphic as evidenced by the large number of detected alleles and high rates of heterozygosity, PIC and PE as well. The analysed microsatellite markers may be used in genetic linkage mapping of ostrich, the construction of a comparative genetic map with other ratites, such as emu and rhea, and population genetics studies or phylogenetic studies of these birds

    The future of hybrid imaging—part 1: hybrid imaging technologies and SPECT/CT

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises in three parts the state-of-the-art of dual-technique imaging, with a focus on clinical applications. We will attempt to highlight selected areas of potential improvement of combined imaging technologies and new applications. In this first part, we briefly review the origins of hybrid imaging and comment on the status and future development of single photon emission tomography (SPECT)/computed tomography (CT). In short, we could predict that, within 10 years, we may see all existing dual-technique imaging systems, including SPECT/CT, in clinical routine use worldwide. SPECT/CT, in particular, may evolve into a whole-body imaging technique with supplementary use in dosimetry applications

    ALBIRA: A small animal PET/SPECT/CT imaging system

    Full text link
    Purpose: The authors have developed a trimodal PET/SPECT/CT scanner for small animal imaging. The gamma ray subsystems are based on monolithic crystals coupled to multianode photomultiplier tubes (MA-PMTs), while computed tomography (CT) comprises a commercially available microfocus x-ray tube and a CsI scintillator 2D pixelated flat panel x-ray detector. In this study the authors will report on the design and performance evaluation of the multimodal system. Methods: X-ray transmission measurements are performed based on cone-beam geometry. Individual projections were acquired by rotating the x-ray tube and the 2D flat panel detector, thus making possible a transaxial field of view (FOV) of roughly 80 mm in diameter and an axial FOV of 65 mm for the CT system. The single photon emission computed tomography (SPECT) component has a dual head detector geometry mounted on a rotating gantry. The distance between the SPECT module detectors can be varied in order to optimize specific user requirements, including variable FOV. The positron emission tomography (PET) system is made up of eight compact modules forming an octagon with an axial FOV of 40 mm and a transaxial FOV of 80 mm in diameter. The main CT image quality parameters (spatial resolution and uniformity) have been determined. In the case of the SPECT, the tomographic spatial resolution and system sensitivity have been evaluated with a99mTc solution using single-pinhole and multi-pinhole collimators. PET and SPECT images were reconstructed using three-dimensional (3D) maximum likelihood and ordered subset expectation maximization (MLEM and OSEM) algorithms developed by the authors, whereas the CT images were obtained using a 3D based FBP algorithm. Results: CT spatial resolution was 85μm while a uniformity of 2.7% was obtained for a water filled phantom at 45 kV. The SPECT spatial resolution was better than 0.8 mm measured with a Derenzo-like phantom for a FOV of 20 mm using a 1-mm pinhole aperture collimator. The full width at half-maximum PET radial spatial resolution at the center of the field of view was 1.55 mm. The SPECT system sensitivity for a FOV of 20 mm and 15% energy window was 700 cps/MBq (7.8 × 10−2%) using a multi-pinhole equipped with five apertures 1 mm in diameter, whereas the PET absolute sensitivity was 2% for a 350–650 keV energy window and a 5 ns timing window. Several animal images are also presented. Conclusions: The new small animal PET/SPECT/CT proposed here exhibits high performance, producing high-quality images suitable for studies with small animals. Monolithic design for PET and SPECT scintillator crystals reduces cost and complexity without significant performance degradation.This study was supported by the Spanish Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica (I+D+I) under Grant No. FIS2010-21216-CO2-01 and Valencian Local Government under Grant PROMETEO 2008/114. The authors also thank Brennan Holt for checking and correcting the text.Sánchez Martínez, F.; Orero Palomares, A.; Soriano Asensi, A.; Correcher Salvador, C.; Conde Castellanos, PE.; González Martínez, AJ.; Hernández Hernández, L.... (2013). ALBIRA: A small animal PET/SPECT/CT imaging system. Medical Physics. 40(5):5190601-5190611. https://doi.org/10.1118/1.4800798S5190601519061140

    Low-energy electronic states of carbon nanocones in an electric field

    Get PDF
    «Non v’è salvezza al di fuori del mostruoso»; «la diserzione, intrinseca alla letteratura, diventa nel fantastico sfida blasfema, obiezione, tradimento»: in questi passi, lo scrittore italiano Giorgio Manganelli (1922-1990) riafferma la portata trasgressiva della sua opera, indicando nel superamento dei limiti razionali, del verosimile, dell’accettabile o, in altre parole, del narrabile la via per sottrarre la letteratura ad una funzione strumentale. Così, nel privilegiarla come atto di linguaggio e nel disimpegnarla da mansioni mimetico-realistiche, Manganelli la popola di esseri informi e metamorfici. Ad esempio, in opere quali Hilarotragoedia (1964) e Dall’inferno (1985) il mostruoso non si presenta come qualcosa di aberrante, ma piuttosto come il risultato di una sorta di teologia paradossale, in grado di sovvertire o burlare le grandi convenzioni umane. Partendo da tali questioni, l’articolo affronterà il tema del mostro quale infrazione e sovversione essenziali allo scardinamento di un orizzonte ermeneutico antropocentrico, come voleva, tra gli altri, Foucault. «There is no salvation beyond the monstrous»; «desertion, intrinsic to literature, becomes in the Fantastic a blasphemous challenge, objection and betrayal»: with these words, the Italian writer Giorgio Manganelli (1922-1990) reaffirms the transgression of his work. With the overcoming of rational limits, of the plausible, of the acceptable or, in other words, of the tellable, the writer illustrates the way to prevent the use of literature as an instrumental function. Therefore, by using literature as an act of speech and by disengaging it from its mimetic-realistic responsibilities, Manganelli populates it with shapeless and metamorphic beings. In works such as Hilarotragoedia (1964) and From Hell (1985), for example, the monstrous does not resemble something aberrant, but rather it represents a kind of paradoxical theology, capable of subverting or mocking the great human convictions. Starting from these questions, this paper will approach the subject of the monster as infringement and subversion essential for the disruption of a hermeneutic and anthropocentric horizon, as Foucault, among others, wished
    corecore