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We demonstrate that, based on their unique geometry, the migration of all symmetrical

and certain asymmetrical tilt grain boundaries is necessarily accompanied by sliding parallel to

the interface. By contrast, for all other types of grain boundaries no crystallographic necessity

exists for migration to be coupled with sliding. Except in the case of the coherent (111) twin

boundary in the fcc lattice, the coherently-twinned translational configxn-ation is identified as the

saddle-point configuration for the migration of the symmetrical tilt boundaries.

PACS: 61.70.Ng, 66.30.Lw



I. INTRODUCTION

The idea that the migration of a grain boundary (GB) normal to the boundary

plane and its sliding parallel to the boundary plane should be regarded as distinct kinetic

processes seems to be 'intuitively reasonable. In the case of migration it is only necessary

that atoms in the immediate vicinity of the boundary move, whereas in the case of sliding

all the atoms in one of the adjoining grains have to move collectively. Thus, without

considering the detailed atomic structure of the GB, it is not immediately obvious that

these two processes should be related. Yet, in practice, GB sliding has frequently been

observed during GB migration [1]. On the other hand, in some recent instances a

remarkable absence of sliding during migration has been noted [2,3].

Existing descriptions of mechanisms of boundary ruination basically fall into one of

two categories: models which involve "single-atom transfer" [4] or atom shuffling [1,3-5], and

those which involve secondary GB dislocations (SGBDs) and boundary steps [1,5,6]. In a

recent hot-stage in-situ TEM study of bicrystals of gold [2], relatively small boundary

displacements were observed which showed geometrical features consistent with the SGBD-

step model [2,6]. On the other hand, larger displacements were also observed which

apparently occurred without the participation of moving dislocations. Since these experiments

appear to provide some support for both types of description, it is an open question as to

whether there is a single dominant migration mechanism.

It has long been recognized that the atomic structure plays an important role in

determining the mechanism of GB migration and the magnitude of the GB mobility [6,7].

Indeed, a consideration of structural details of boundary sliding as modeled by the shearing of

a bicrystal of soap bubbles has led to the suggestion that the processes of sliding and migation

are coupled and their rates are proportional for high-angle boundaries, since this would allow

boundary motions without significant change in sunacture [8]. This predicted proportionality
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has been observed experimentally [9], and has also been explicitly demonstrated in molecular-

dynamics simulations of symmetrical tilt bicrystals [10].

In this paper we demonstrate that, within a simple crystallographic model, migration of

a symmetrical tilt grain boundary (STGB) may be viewed as a two-step sliding process. This

is also true for other types of GBs with only one atom per plane in the unit cell of the GB (such

as certain asymmetrical tilt boundaries). Further, as a consequence of the unique unit-cell

geometry of STGBs [11], our crystallographic analysis leads to the identification of the

coherently-twinned translational configuration of the STGB as the saddle-point configuration

for its migration. By contrast, for all other types of boundaries with more than one atom per

atomic plane in their planar unit cell, there is no simple geometrical necessity for sliding and

migration to be coupled, and a reshuffling of the atoms during GB mivation seems to be a

requirement [4].

II. GEOMETRY OF SYMMETRICAL TILT GRAIN BOUNDARIES

In any Bravais lattice or any crystal lattice with inversion symmetry, the STGB

configuration on a given crystaUographic plane, characterized by Miller indices (hkl), may be

thought of as having been formed by a rotation of one half of a perfect crystal with respect to

the other by an angle of 180° about the normal to the (hkl) plane, denoted by <hkl> [11]. This

property arises from the inversion symmetry of these lattices [11,12]. Such a rotation of the

perfect crystal in Fig. l(a) (in this case about an axis through a point half way between lattice

sites in planes C and D) results in the inversion of the stacking sequence of (hid) planes on one

side of the GB with respect to the other, leading to the well-known fact that all STGBs may be

thought ot_as general twins (see Fig. l(b)). However, a rigid-body translation, Topt=(Tx,Ty)

parallel to the GB (x-y) plane, such as to minimize the free energy of the bicrystal, usually

results in the destruction of the mirror symmetry in Fig. l(b), leaving some translated - yet still
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inverted - configuration sketched schematically in Fig. 1(c). We will refer to this configuration

with the lowest free energy as the ground state, keeping in mind that more than one ground

state, with more or less the same GB energy, may, in principle, exist. For the moment we

exclude any coherently-twinned configuration (in which, by definition, one lattice plane is

shared by the two halves of the bicrystal; i.e., in which the GB plane is an atom plane), as the

ground state (see Sec. IV). In practice, in the fcc and bcc lattices, for example, only one such

coherent-twin configuration is thought to exist (namely on the (111) and (112) planes,

respectively).

The fact that in lattices with inversion symmetry all STGBs may be viewed as special

180° twist boundaries gives rise to some unique geometrical properties of the STGB

configuration on a given plane [11]: namely, its planar unit-cell dimensions are identical to

those of the perfect-crystal (hkl) plane, and it has only one atom per plane in the unit cell

[compare Figs. l(a) and (c)]. For rotation about <hkl> by any twist angle other than 180" a

twist boundary, with a generally much larger planar unit cell and the same (non-inverted)

stacking sequence on the two sides of the GB plane, is obtained. In the next section we will

illustrate how this unique geometry of the STGB configuration on a given crystallogaphic

plane leads directly to the necessity for STGB migration to take place via sliding.

The number of planes in the repeat stacking sequence, P(hkl) (sometimes also referred

to as the stacking period), is given by [11,12]

e(hkl)= _(hkl)(h2+k2+12),(]3(hkl)=1or2) (I)

where, as in x-ray structure factors, the particular value of 13(hkl)depends on the specific

combination of odd and even Miller indices. For example, in both the fcc and bcc lattices

13(111)=13(112)=1,resulting in P(111)=3 and P(112)=6. For all other choices of (hkl) in these

two lattices, P(hkl) is 10 (for the (210) and (310) planes) or more. According to Eq. (1),



P(hkl) increases rapidly with increasing Miller indices, while simultaneously the interplanar

lattice spacing, d(hkl), decreases in the well-known manner, proportionally to (h2+k2+12) "1/2.

It follows that on a lattice plane with only one or two planes in the repeat stacking

sequence, such as the (100) and (110) planes in the fcc and bcc lattices, with an ...IABIABI...

planar stacking, the STGB and perfect-crystal configurations are identical because a translation

of the STGB configuration, ..IABIBAI.., such that A---)B (and hence B---)A) in one half of the

bicrystal re-inverts the stacking sequence [11,12]. The simplest non-trivial case in the fcc

lattice is therefore the (111) plane, with three planes in the stacking sequence, for which -

because of the 3-fold symmetry axis - a rotation by 60°+ kxl20 ° (k---0,+l+2 .... ) about the

<111> normal produces the well-known coherent (111) twin boundary. As already

mentioned, all other STGBs in the two lattices involve GB planes with at least six planes in the

repeat stacking sequence.

Because a large planar stacking sequence is notationally cumbersome to manipulate, to

illustrate our main point we choose as an example a case in which there are six planes in the

stacking sequence, such as for the (112) planes in the fcc lattice (see Fig. 1). The six planes,

denoted A, B, C, D, E and F, have identical atomic configurations and are merely displaced

relative to each other parallel to the GB (x-y) plane by integer multiples of the two-dimensional

vector d=(dx,dy) (see Fig. l(a)). A translation by d transforms an A plane into a B plane, a B

plane into a C plane, etc. Since there are six planes in the stacking sequence considered here, a

translation by nd (n_<6)is identical to a translation of (6-n)d. (Notice that the atoms in each of

the planes in Fig. 1 are periodically arranged in the x-y plane; the edges of a single planar unit

cell are indicated by vertical dashed lines.) On rotation of the bottom half of the ideal crystal in

Fig. l(a) with respect to the top by 180° to produce the inverted stacking sequence in Fig l(b),

two planes of atoms (here denoted by F) are moved right on top of each other, resulting in the

(unstable) translational configuration with the highest possible GB energy for that plane [11].

Although the optimum riNd-My translation, Topt, leading to the minimum-energy con-



figuration, does not necessarily have to be a multiple of d, for the purpose of illustration, and

with no loss of generality, in Fig. 1(c) we assume this translation to be given by Topt=2d (or

equivalently, Topt=-4d).

III. SLIDING-INDUCED GRAIN-BOUNDARY MIGRATION

An elementary migration step of a GB requires that the first plane, say, in the lower half

of the bicrystal is transformed into the first lattice plane of the upper half, and hence attached in

perfect registry. The essence of our argument is as follows: In any GB with only one atom

per lattice plane in the planar unit cell on each side of the interface, such a transformation can

only take place by a (well-defined) translation parallel to the GB plane. Moreover, since out of

infinitely many possibilities only one such translation parallel to the GB leads to the desired

transformation, it follows that sliding is a necessary but not sufficient prerequisite of GB

mig-ration. For GBs with a larger number of atoms per plane in the unit cell such a

transformation by a translation alone is notpossible. Instead, a reshuffling or a coherent

rotation of the atoms is necessary to bring about such a realignment of a plane from belonging

to one half of the bicrystal to the other.

As illustrated in Fig. 2, the migration of any STGB may be broken down into a

sequence of two sliding operations, in which the f'mal confi_,_u'ation,Fig. 2(c) is structuially

and energetically identical to the initial configuration in Fig. 2(a) (modulo a symmetry operation

of the entire system), resulting in a displacement of the GB plane by one interplanar spacing in

the direction of the GB normal. Figure 2 illustrates an elementary mim'ation step of the STGB

in Fig. 1(c), initially situated between planes F and B, in terms of such a two-step sliding

process.

To bring about a downward movement of the GB plane in Fig. 2(a), the first plane in

the lower half has to be attached, in perfect registry, to the upper half. The flu'st step, therefore,

represents a rigid-body displacement, denoted by T1, of the lower half of the bicrystal parallel



to theGB plane such that the first plane in the lower half of the bicrystal becomes a coherently-

twinned plane in common to both halves. In our example, this highly symmetrical

configuration is reached by a translation Tl=-d, resulting in the B plane at the interface

becoming a twinned A plane, which is in perfect registry with both the upper and lower halves

of the bicrystal (Fig. 2(b)). (In practice, T1 will of course not be a multiple of d unless Topt

is also a multiple of d.) The net effect of this first rigid-My translation is a downward

movement of the GB plane by one-half of a lattice plane, transforming the B plane from being

nearest to the GB to becoming the GB plane itself). Next, a rigid-body translation of the lower

half of the bicrystal by the vector, T 2, leads to the new ground state in Fig. 2(c) with the GB

having mi_ated downward by one lattice plane. For STGBs with only a single translational

ground state this second rigid-body translation, Tz, takes the GB from the coherently-twinned

configuration in Fig. 2(b) to the new ground state in Fig. 2(c). In our example, a rind-body

translation by T2=-3d of only those atoms below the twinned A plane in Fig. 2(b) is thus

required. This produces the configuration shown in Fig. 2(c), in which the GB plane has now

moved downwards by a total of one interplanar spacing relative to Fig. 2(a). That the

configuration in Fig. 2(c) is energetically equivalent to that in Fig. 2(a) is easily seen by simply

relabeling all lattice planes of the system such that A_F, F_E, etc.; i.e., by applying a

translation of-d to the system as a whole (see Fig 2(d)).

In the fcc lattice, with the exception of the (111) plane, the coherently-twinned

configuration sketched in Fig. 2(c) has a higher GB energy than the translationally optimized

ground state in Fig. 2(a). It may thus be thought of as the saddle point through which the

system has to pass during GB migration. In this saddle-point configuration, the twinned plane

[plane A in Fig. 2(b)] represents the GB-plane itself. Since this plane is being shared

symmetrically by both halves of the bicrystal, the system may subsequently either slide back to

the starting configuration (thus aborting an unsuccessful attempt to mig-rate),or it can slide on,

by a vector T2, into a new ground state. In the fh-st scenario, following an unsuccessful



excursion to the saddle point the twinned A plane re-attaches itself to the lower half, while in a

successful migration attempt it ultimately attaches itself to the upper half.

Given that a rigid-My translation represents generally _hree (so-called microscopic)

degrees of freedom (DOFs), one can expect the two-dimensional in-plane translations T1 and

T2 to be accompanied by a local volume change at the GB (i.e., a translation perpendicular to

the GB). In fact, since in metals the GB energy is approximately proportional to the volume

increase per unit area at the interface [13], one would expect any attempt of the GB to slide

towards the saddle point to be accompanied by a volume increase.



IV. DISCUSSION

The above interpretation of GB migration as a two-step sliding process, with the

twinned configuration as the saddle-point configuration, can obviously not be operative in an

STGB in which the coherently-twinned configuration is the ground state. For example, the

STGB on the (111) plane in the fcc lattice [with P(111)=3], in which Topt produces the well-

known (I 11) twin boundary, ...CABICAB C BACIBACI... (with the C plane twinned in this

example), represents a special case in which the ground state and the coherently-twinned

configuration are identical. Therefore, at fast sight one would expect that no activation barrier

has to be overcome to induce GB migration. However, for any twinned ground-state

configuration a simple one-step translation can be chosen which results in the displacement of

the GB plane by one full interplanar spacing. In the case of the (111) twin in the fcc lattice,

such a translation is one in which B_A in the lower half of the bicrystal, resulting in the

configuration ...ICABC A CBI... (in which the A plane is now twinned). Since for any

translation away from the low-energy twinned configuration the ener_ increases dramatically,

this process is likely to involve a very high energy barrier to sliding, in accord with the well-

known low-mobility of this interface. Furthermore, a simple crystallographic argument as to

which translation leads to the saddle-point configuration cannot be made in this case.

Although from the above it is clear that in the fcc lattice the migration of all STGBs

except the (111) twin may be viewed as due to two well-defined sliding operations, T1 and

T2, it is also clear that GB sliding by some arbitrary vector T does not necessarily result in GB

migration [8], as illustrated in Fig. 3. Starting from the ground state of Fig. 1(c) (see

Fig. 3(a)), the lower half of the bicrystal may slide, for example, by T=2d to the new

configuration in Fig. 3(b). That this configuration has the same energy as the ground state in

Fig. 3(a) is again seen by simply relabeling all lattice planes of the entire system, such that

A---)C,B--)D, etc.; i.e., by applying a translation of 2d to the system as a whole. The

resulting configuration, Fig. 3(c), is identical to Fig. 3(a), however with the entire bicrystal
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turned upside down. Therefore this sliding between two isoenergetic states takes place with no

GB migration.

Since only one (or, for STGBs with more than one ground state, only a few)

crystallographically well-defined translations lead to the saddle point for GB migration, one

would expect that the application of an external shear stress leads to GB migration only under

well-defined crystallographic circumstances. Also, as a consequence of the above

interpretation of GB migration as a two-step sliding process, with the twinned configuration as

the saddle-point configuration, the activation energy for GB migration should be governed by

the related difference in energy between the ground state and the coherently-twinned

configuration. However, in STGBs with more than one translational ground state, Topt, a

distribution of saddle-point energies, and of the corresponding values of T1 and T2, is

expected.

The above arguments are, of course, purely crystallographic by nature, valid for all

GBs with only one atom per lattice plane in the unit cell. Although in the above discussion

only symmetrical tilt boundaries were considered, there exist many asymmetrical tilt boundaries

(ATGBs) which also have only one atom per plane in the unit cell on each side of the interface,

and for which the above geometrical considerations should apply equally. The only difference

is that the saddle-point configuration due to the asymmetry in the GB plane cannot be a twinned

state. However, the riNd-body translation T1 is still well defined in this case as that vector

which attaches the uppermost plane of the lower crystal in perfect re#stry to the upper crystal.

Again, the reasons why such a simple migration mechanism might be operative even in this

special group of asymmetrical GBs lie in their unique unit-cell geometry. With only one atom

per lattice plane on both sides of the interface, a translation parallel to the GB plane is sufficient

to transform a lattice plane from belonging to the bottom half to one in the top crystal.

In all other GBs, a simple riNd-My translation cannot bring about such a realignment

of a lattice plane, and a reshuffling of atoms is required for the GB to migate; i.e., there is no
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purely crystallographic reason why such boundaries, with a larger number of atoms in the

planar unit cell, should slide during migration. Instead, their migration involves cooperative

rotations and realignments of all the atoms in an atomic plane. However, since sliding

accompanied by a local volume expansion provides three extra degrees of freedom which can

be energetically optimized throughout the migration process, it is possible in practice that

migration accompanied by sliding may result in a lower energy barrier than migration without

sliding [8]. We mention, however, that in our recent molecular-dynamics investigation of the

migration of a twist boundary no such effects were observed [3].

Of course, one should keep in mind that the above purely crystallographic analysis has

not included any effects arising, for example, from point defects in the GB re,on, such as

impurity segregation and reconstruction or the Frenkel-like defects observed in our simulations

[3], and that the idealized grain boundaries described here may or may not exist in this form in

nature.

In conclusion, we have illustrated how, for simple crystallographic reasons, in all

symmetrical tilt boundaries as well as those asymmetrical tilt boundaries with only one atom

per plane in the unit cell, mi_"ation normal to the interface plane is inevitably accompanied by

sliding parallel to the interface plane. This unique migration mechanism thus seems to be

closely connected with the unique geometry of these GBs. In particular, their migration

involves only the three microscopic degrees of freedom associated with the relative translation

of the two grains. By contrast, in all other types of GBs a complex many-body reshuffling of

the atoms at the GB must take place in order to realign a lattice plane with the semicrystal on the

opposite side of the GB. Any observed sliding associated with their migration therefore arises

from the energetics and dynamics of this reshuffling rather than from crystallographic

necessity.
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FIGURE CAPTIONS

FIG. 1. Generation of a symmetrical tilt boundary on the (hkl) plane of a Bravais lattice by a

180° twist rotation about the plane normal, <hkl> (schematic) [11]. (a) A crystal

oriented normal to some (hkl) plane which, in this example, is taken to have six planes

in the repeat stacking sequence (such as for (112) planes in the fcc or bcc lattice). Here

d is the two-dimensional translation vector which transforms, for example, an A plane

to a B plane. (b) A 180° rotation, in this case about a point half way between lattice

sites in planes C and D, is applied to the lower half of the perfect crystal with respect to

the top half, with the result that the stacking sequence is reversed. This configuration,

with two identical planes on top of one another, has the highest energy of any

translational configuration and is therefore usually unstable [11]. Here and throughout,

the GB plane is denoted by a horizontal bold line. (c) A rind-body translation of the

lower half with respect to the upper by a vector Topt (here taken to be Topt=2d)

minimizes the GB energy and results in the ground-state confi_ration of the STGB on

the (hkl) plane. In practice, Topt need not be a multiple of d.

FIG. 2. Two-step sliding process leading to STGB migration (schematic). (a) Ground-state

configuration of Fig. l(c) from which sliding and migration are considered. (b) Sliding

of the lower half of the STGB in (a) by T1 (=-d in this case) produces a twinned

plane, labeled A, shared by the two halves of the bicrystal. (c) Sliding of all the planes

below the twinned A plane by T2 (=-3d in this case) results in a completed migration

event of the GB by one interplanar spacing, d(hkl), relative to the initial configuration

in (a). (d) That the configuration in (c) is, indeed, identical to that in (a) is easily seen

by simply relabeling all lattice planes of the entire system such that A---_F,E-_D, etc.;

i.e., by applying a translation of-d to the system as a whole.
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FIG. 3. For T#T1, T#T2 GB sliding takes place without migration (schematic). (a) Ground-

state configuration of Fig. 1(c) from which sliding is considered. (b) Sliding of the

lower half by T--2d (#T1) does not result in GB migration. (c) By relabeling all

lattice planes of the system, such that A--_C, B-->D, etc.; i.e., by applying a translation

of 2d to the system as a whole, it is seen that the configurations (a) and (b) axe

isoenergetic.
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