675 research outputs found

    The NuSTAR view of the non-thermal emission from PSR J0437-4715

    Get PDF
    We present a hard X-ray Nuclear Spectroscopic Telescope Array (NuSTAR) observation of PSR J0437−4715, the nearest millisecond pulsar. The known pulsations at the apparent pulse period ∌5.76ms are observed with a significance of 3.7σ, at energies up to 20 keV above which the NuSTAR background dominates. We measure a photon index Γ = 1.50 ± 0.25 (90 per cent confidence) for the power-law fit to the non-thermal emission. It had been shown that spectral models with two or three thermal components fit the XMM–Newton spectrum of PSR J0437−4715, depending on the slope of the power-law component, and the amount of absorption of soft X-rays. The new constraint on the high-energy emission provided by NuSTAR removes ambiguities regarding the thermal components of the emission below 3keV. We performed a simultaneous spectral analysis of the XMM–Newton and NuSTAR data to confirm that three thermal components and a power law are required to fit the 0.3–20 keV emission of PSR J0437−4715. Adding a ROSAT-PSPC spectrum further confirmed this result and allowed us to better constrain the temperatures of the three thermal components. A phase-resolved analysis of the NuSTAR data revealed no significant change in the photon index of the high-energy emission. This NuSTAR observation provides further impetus for future observations with the NICER mission (Neutron Star Interior Composition Explorer) whose sensitivity will provide much stricter constraints on the equation of state of nuclear matter by combining model fits to the pulsar's phase-folded light curve with the pulsar's well-defined mass and distance from radio timing observations

    Target of Opportunity observations of flaring blazars with H.E.S.S. \

    Full text link
    Blazars are the most common class of TeV extragalactic emitters. In the framework of the AGN unified model, they are understood as AGNs with a relativistic jet pointing close the line of sight. They are characterized by extreme variability, observed to be as fast as minutes. These flares are usually observed at multiple wavelengths and their study require fast reaction and coordination among multiwavelength observatories. An important part of blazars observations with the H.E.S.S. array of Cherenkov telescopes is thus in the form of Target of Opportunity (ToO) observations. In this contribution the H.E.S.S. blazar ToO program is presented, with a focus on recent results.Comment: to appear in the proceedings of the ICRC 2023 Conferenc

    Dynamic Regulation of Alternative Splicing by Silencers that Modulate 5â€Č Splice Site Competition

    Get PDF
    SummaryAlternative splicing makes a major contribution to proteomic diversity in higher eukaryotes with ∌70% of genes encoding two or more isoforms. In most cases, the molecular mechanisms responsible for splice site choice remain poorly understood. Here, we used a randomization-selection approach in vitro to identify sequence elements that could silence a proximal strong 5â€Č splice site located downstream of a weakened 5â€Č splice site. We recovered two exonic and four intronic motifs that effectively silenced the proximal 5â€Č splice site both in vitro and in vivo. Surprisingly, silencing was only observed in the presence of the competing upstream 5â€Č splice site. Biochemical evidence strongly suggests that the silencing motifs function by altering the U1 snRNP/5â€Č splice site complex in a manner that impairs commitment to specific splice site pairing. The data indicate that perturbations of non-rate-limiting step(s) in splicing can lead to dramatic shifts in splice site choice

    Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    Get PDF
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure

    GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin

    Get PDF
    Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9–15 months) transgenic APP/PS1 mice and old (19–25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABAA receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABAA receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABAA receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABAA receptor α1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABAA receptor α1 subunit and improvement of cognitive functions by long term GABAA receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABAA receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like AÎČ and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) Îł\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic Îł\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) Îł\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE Îł\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1−101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE Îł\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous Îł\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&

    Receptor-Associated Protein (RAP) Plays a Central Role in Modulating AÎČ Deposition in APP/PS1 Transgenic Mice

    Get PDF
    BACKGROUND: Receptor associated protein (RAP) functions in the endoplasmic reticulum (ER) to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP) and lipoprotein receptor 11 (SorLA/LR11). Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP), including processes involved in the generation, catabolism and deposition of beta-amyloid (Abeta) peptides. METHODOLOGY/PRINCIPAL FINDINGS: Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9) were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05)]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/-)/RAP(+/-) mice correlated with 30-40% increases in amyloid deposition by 9 months of age. CONCLUSIONS/SIGNIFICANCE: Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Abeta catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis

    Detailed spectral and morphological analysis of the shell type SNR RCW 86

    Full text link
    Aims: We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW~86 and for insights into the production mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods: We analyzed High Energy Spectroscopic System data that had increased sensitivity compared to the observations presented in the RCW~86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results:We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5~keV X-ray data reveals a correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is best described by a power law with an exponential cutoff at Ecut=(3.5±1.2stat)E_{cut}=(3.5\pm 1.2_{stat}) TeV and a spectral index of Γ\Gamma~1.6±0.21.6\pm 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW~86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to ∌\sim0.1\% of the initial kinetic energy of a Type I a supernova explosion. When using a hadronic model, a magnetic field of BB~100ÎŒ\muG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2^{-2} spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Γp\Gamma_p~1.7 would be required, which implies that ~7×1049/ncm−37\times 10^{49}/n_{cm^{-3}}erg has been transferred into high-energy protons with the effective density ncm−3=n/1n_{cm^{-3}}=n/ 1 cm^-3. This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1~cm^-3.Comment: accepted for publication by A&

    Constraints on (2060) Chiron's size, shape, and surrounding material from the November 2018 and September 2019 stellar occultations

    Full text link
    After the discovery of rings around the largest known Centaur object, (10199) Chariklo, we carried out observation campaigns of stellar occultations produced by the second-largest known Centaur object, (2060) Chiron, to better characterize its physical properties and presence of material on its surroundings. We predicted and successfully observed two stellar occultations by Chiron. These observations were used to constrain its size and shape by fitting elliptical limbs with equivalent surface radii in agreement with radiometric measurements. Constraints on the (2060) Chiron shape are reported for the first time. Assuming an equivalent radius of Requiv_{equiv} = 105−7+6^{+6}_{-7} km, we obtained a semi-major axis of a = 126 ±\pm 22 km. Considering Chiron's true rotational light curve amplitude and assuming it has a Jacobi equilibrium shape, we were able to derive a 3D shape with a semi-axis of a = 126 ±\pm 22 km, b = 109 ±\pm 19 km, and c = 68 ±\pm 13 km, implying in a volume-equivalent radius of Rvol_{vol} = 98 ±\pm 17 km, implying a density of 1119 ±\pm 4 kg m−3^{-3}. We determined the physical properties of the 2011 secondary events around Chiron, which may then be directly compared with those of Chariklo rings, as the same method was used. Data obtained from SAAO in 2018 do not show unambiguous evidence of the proposed rings, mainly due to the large sampling time. Meanwhile, we discarded the possible presence of a permanent ring similar to (10199) Chariklo's C1R in optical depth and extension. Using the first multi-chord stellar occultation by (2060) Chiron and considering it to have a Jacobi equilibrium shape, we derived its 3D shape. New observations of a stellar occultation by (2060) Chiron are needed to further investigate the material's properties around Chiron, such as the occultation predicted for September 10, 2023

    The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud

    Get PDF
    The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A is, surprisingly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a gamma-ray source population in an external galaxy, and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a superbubble.Comment: Published in Science Magazine (Jan. 23, 2015). This ArXiv version has the supplementary online material incorporated as an appendix to the main pape
    • 

    corecore