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SUMMARY

Alternative splicing makes a major contribution
to proteomic diversity in higher eukaryotes with
�70% of genes encoding two or more isoforms. In
most cases, the molecular mechanisms responsible
for splice site choice remain poorly understood.
Here, we used a randomization-selection approach
in vitro to identify sequence elements that could
silence a proximal strong 50 splice site located down-
stream of a weakened 50 splice site. We recovered
two exonic and four intronic motifs that effectively
silenced the proximal 50 splice site both in vitro and
in vivo. Surprisingly, silencing was only observed in
the presence of the competing upstream 50 splice
site. Biochemical evidence strongly suggests that
the silencing motifs function by altering the U1
snRNP/50 splice site complex in a manner that
impairs commitment to specific splice site pairing.
The data indicate that perturbations of non-rate-
limiting step(s) in splicing can lead to dramatic shifts
in splice site choice.

INTRODUCTION

In higher eukaryotes, the majority of pre-mRNAs are subject to

alternative splicing, a process that can be regulated according

to developmental stage or cell type, or in response to signal

transduction pathways (reviewed in Black, 2003; Blencowe,

2006; House and Lynch, 2008). Splicing patterns can be remark-

ably complex, with some pre-mRNAs processed to yield dozens

or even thousands of distinct isoforms (reviewed in Black and

Graveley, 2006).

Intensive bioinformatic and experimental analyses have begun

to identify specific sequence elements that either positively

(splicing enhancers) or negatively (splicing silencers) influence

splice site choice and, in many cases, specific trans-acting
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factors that recognize these elements have been characterized

(reviewed in Black and Graveley, 2006; Blencowe, 2006; Wang

and Burge, 2008).

With regard to silencers, there is evidence in support of several

distinct mechanisms by which these elements exert their inhibi-

tory effects. One straightforward mechanism is ‘‘bind and block’’

wherein a protein factor binds to a silencing element and steri-

cally prevents the binding of a splicing factor (e.g., Kanopka

et al., 1996; Mayeda and Krainer, 1992; Merendino et al., 1999;

Shin et al., 2004; Ule et al., 2006; Valcarcel et al., 1993; Wagner

and Garcia-Blanco, 2001; Zheng et al., 1998, Zhu et al., 2001). A

second mechanism is silencer-promoted formation of nonfunc-

tional or ‘‘dead end’’ complexes (e.g., Agris et al., 1989; Kan

and Green, 1999; Giles and Beemon, 2005; House and Lynch,

2006; Labourier et al., 2001). Such complexes apparently

contain all of the factors necessary for splicing but are unable

to execute the reaction, presumably because a crucial confor-

mation or conformational change is blocked. A third mechanism

is blockage of communication between splice sites either by

looping out of the affected site (e.g., Blanchette and Chabot,

1999) or by binding of a repressive complex downstream of

the regulated site (e.g., Nagengast et al., 2003; Sharma et al.,

2005; Sharma et al., 2008). In these cases, splice site recognition

does not appear to be affected, but productive association of 50

and 30 splice sites is prevented by mechanisms that have not yet

been elucidated. There are also numerous examples of silencers

that have been shown to bind specific trans-acting factors; but

how these proteins exert their negative effects is largely

unknown (reviewed in Black and Graveley, 2006; Fu, 2004;

Hastings and Krainer, 2001; Matlin et al., 2005).

Although the mechanisms of splicing silencers are beginning

to be elucidated in the context of regulated exons, it is not clear

whether similar elements or mechanisms are operative in the

repression of ‘‘splice sites’’ that are never used in splicing. In

this regard, it is well established that potential 50 splice sites

(including those that perfectly match the consensus recognition

site for U1 snRNP) far outnumber authentic 50 splice sites (Sena-

pathy et al., 1990; Sun and Chasin, 2000). Furthermore, it is not

clear why ‘‘pseudoexons,’’ exon-sized sequences that are
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bounded by sequences indistinguishable from functional 30 and

50 splice sites, are ignored by the splicing machinery (Cote et al.,

2001; Sun and Chasin, 2000).

To gain further insight into potential molecular mechanisms by

which splice sites are silenced, we employed a randomization-

selection (SELEX) (Tuerk and Gold, 1990) strategy in vitro

designed to identify all possible sequences at specific intronic

and exonic positions that could silence a consensus 50 splice

site. Because the experimental design demanded that a

‘‘perfect’’ proximal 50 splice site be silenced in the presence of

a weakened distal 50 splice site, we anticipated that we would

recover elements that would inactivate or occlude the proximal

site through formation of stable protein-RNA complexes.

Focusing only on elements that conferred the strongest silencing

phenotypes, we identified two exonic and four intronic motifs

whose presence caused nearly complete inhibition of proximal

splicing and concomitant activation of the weak upstream site.

Remarkably, none of these motifs functioned by sequestering

or inactivating the strong 50 splice site. Rather, in the absence

of the upstream 50 splice site, the consensus site remained fully

functional. These results demonstrate that kinetic effects on

non-rate-limiting steps can elicit dramatic differences in splicing

patterns and might help to explain alternative splicing pheno-

types observed when the levels of many splicing factors,

including basal components of the spliceosome (e.g., Karni

et al., 2007; Olson et al., 2007; Park et al., 2004), are even

modestly altered.

RESULTS

Identification of Intronic and Exonic Splicing Silencers
Using a Randomization-Selection Approach
To identify potential splicing regulatory signals that could silence

a strong 50 splice site, we generated a synthetic pre-mRNA

containing two alternative 50 splice sites: a weak upstream 50

splice site and a strong proximal 50 splice site (see Figure 1

and Experimental Procedures). In in vitro splicing assays, the

strong proximal 50 splice site was used almost exclusively

(Figure 1A). Importantly, the weak distal 50 splice site remained

functional because inactivation of the proximal 50 splice site by

mutation resulted in distal splicing (Figure 1A). We used this

base construct to generate pre-mRNAs containing completely

randomized regions either upstream or downstream of the

strong 50 splice site. The pool randomized at positions +11 to

+22 relative to the proximal site was used to identify intronic

silencers, whereas the pool randomized at the positions –18

to –7 was used to identify exonic silencers (see Experimental

Procedures). Twelve nucleotides were chosen for randomization

because this length represents at least 2-fold coverage of the

binding site size (6 nt) of most RNA binding proteins (see Fair-

brother et al., 2002) and the total pool (�107 variants) can be

easily accommodated in standard in vitro splicing reactions

(3 ng RNA contain �1010 molecules of substrate). The positions

for insertion of the randomized sequences were chosen so as not

to overlap with the minimal binding site of U1 snRNP (–6 to +10

relative to the splice junction; P.A.M., J.A.D., and T.W.N., unpub-

lished data; Mount et al., 1983). To evaluate the quality of each

pool, in vitro transcribed RNAs were subjected to primer
extension sequencing; equal distribution of all bases in the

randomized regions indicated no sequence bias (data not

shown; see Figure S4A [available online]). To facilitate the

selection (see below), the 30 splice site was mutated from AG/

G to UC/C such that splicing was arrested after the first trans-

esterification reaction (e.g., Reed, 1989), resulting in accumula-

tion of lariat-30 exon intermediates. This 30 splice site mutation

did not affect 50 splice site choice (compare Figure 1A with

1B). When the pools were assayed for splicing in vitro, they

spliced identically to the unsubstituted RNAs; that is, the prox-

imal site was used almost exclusively, indicating that most

sequences within the pool had no effect on splice site choice

(Figure 1B, compare lanes 1 and 3; see Figure S4B).

To identify those sequences that could modulate use of the

proximal site, we used the selection strategy outlined in

Figure 1C. In brief, the pools of templates were transcribed

in vitro and because we considered it likely that the most

common ‘‘silencing elements’’ in the pool would be sequences

that could base pair with the 50 splice site and thus occlude it

through formation of stable secondary structure, we introduced

a step to exclude such elements prior to splicing assays.

Because purified U1 snRNP binds stably to consensus 50 splice

sites (the strong site) but not to splice sites mutated at the +5+6

positions (the weak site) (P.A.M., J.A.D., and T.W.N., unpub-

lished data), we could use U1 snRNP binding to enrich for RNA

molecules in which the strong proximal 50 splice site remained

accessible. Accordingly, we mixed purified U1 snRNP (Hochleit-

ner et al., 2005) with the starting pools and recovered bound

RNAs using anti-U1A antisera (see Experimental Procedures).

Recovered RNAs were then deproteinized and used as

substrates for in vitro splicing in HeLa cell nuclear extract.

After splicing, the RNAs were separated on denaturing poly-

acrylamide gels and the region containing distal lariat intermedi-

ates was excised from the gel. Following debranching (see

Experimental Procedures), the linear RNA molecules containing

the proximal 50 splice site and surrounding sequence were

amplified by RT-PCR. These molecules were then used to regen-

erate the starting constructs by overlapping PCR (Figure 1C).

As shown in Figure 1D (lane 0), there was negligible distal

splicing in the starting pools but the proportion of distal splicing

intermediates rose rapidly after iterative rounds of selection;

maximum accumulation of distal intermediates was reached

after only four rounds of selection for the intronic position

(Figure 1D, lanes 1–4) and seven rounds for the exonic position

(data not shown). At this point, the populations were recovered

and intact templates generated as described above. These

pools of DNA were then cloned and propagated as libraries

and pre-mRNAs transcribed from individual clones were

analyzed for their splicing behavior. Although there was clone-

to-clone variance, the majority demonstrated a pronounced

preference for the distal splice site (data not shown; see

Figure 2B). By this type of analysis, we recovered 106 clones

containing intronic silencers and 52 clones containing exonic

silencers that displayed predominant use of the distal 50 splice

site; clones that demonstrated substantive but less dramatic

shifts in splice site choice were not analyzed further.

All clones that showed dramatic splicing phenotypes were

sequenced. The 89 unique intronic silencers (12-mers) and the
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Figure 1. Functional Selection of Splicing Silencers

(A) Schematic representation of the base construct used for functional SELEX; the distal 50 splice site (AUG/GUAAAC) is weak (W) relative to the proximal strong

(S) 50 splice site (AUG/GUAAGU). Only the proximal 50 splice is used when this pre-mRNA is spliced in vitro (lane 1), whereas the distal site is activated when the

proximal 50 splice site is inactivated by a block mutation (AUC/CAUUCAUA, lane 2).

(B) In vitro splicing of the same pre-mRNA as in (A) except that the 30 splice site was changed from AG/G to UC/C to arrest splicing after the first catalytic step.

Lane 1, splicing of the pre-mRNA with a wild-type proximal 50 splice site; lane 2, splicing when the proximal 50 splice site was inactivated by mutation; lane 3,

splicing when the proximal 50 splice site was wild-type but a randomized 12 nt sequence was inserted downstream from positions +11 to +22 (see text).

(C) Schematic of the functional SELEX strategy; for a detailed description of individual steps, see the text and Experimental Procedures.

(D) Using the strategy illustrated in (C), the pool of body-labeled pre-mRNAs randomized at positions +11 to +22 relative to the proximal 50 splice site were spliced

in vitro and analyzed after zero (lane 0), one (lane 1), two (lane 2), three (lane 3), or four (lane 4) rounds of selection for lariat-30 exon intermediates resulting from use

of the distal 50 splice site. The positions of splicing intermediates, free 50 exon, and lariat-30 exon are indicated.
47 unique exonic silencers (12-mers), together with 2 nt flanking

regions, were then hierarchically clustered to extract groups of

similar sequences. Four intronic motifs and two exonic motifs

were identified (see Table S1 for a complete list of the

sequences). The six distinct motifs are presented as logos in

Figure 2A and the splicing behavior of a specific representative

of each class is shown in Figure 2B. Importantly, none of the

silencing motifs markedly reduced overall splicing efficiency

because a reciprocal relationship was observed between the

reduction in proximal splicing and enhancement of distal

splicing.

To assess the general significance of the selected silencer

elements to splicing of human pre-mRNAs, they were compared
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with three sets of previously characterized splicing silencer

motifs (Wang et al., 2004, 2006; Zhang et al., 2003; Zhang and

Chasin, 2004). In particular, motifs A, C, E, and F, but not B or

D, showed highly significant similarities (for details, see Figure S1A

and Table S2). The potential relevance of the silencer motifs was

then examined further by determining their occurrence on

a genome-wide scale. We found that intronic motifs A and C

are highly enriched downstream of pseudo 50 splice sites relative

to constitutive 50 splice sites (p < 10�121 and p < 10�74); the exonic

motifs E and F were 3 to 4 times more abundant in pseudoexons

compared with real exons (p < 10�7, for details, see Figure S1B).

These results are consistent with a role for several of the identified

motifs in repressing pseudo 50 splice sites.



Splicing Silencers Identified In Vitro Function in Intact
Cells
Because the informatic analyses indicated that the silencing

elements identified in vitro were highly likely to be relevant

in vivo, specific representatives of each class, in the same context

as that assayed in vitro, were introduced into a mammalian

expression vector and transfected into HeLa cells; the functional

30 splice site (AG/G) was used in vivo. As shown in Figure 3A, the

splicing behavior of the base construct was identical to that

observed in vitro; that is, nearly exclusive use of the proximal

strong 50 splice site in the wild-type construct (Figure 3A, lane 5)

and exclusive use of the distal site when the proximal site was in-

activated by mutation (Figure 3A, lane 8). Importantly, all of the

silencers increased distal splicing (Figure 3A, lanes 1–4, 6, 7).

The most dramatic effect was observed with exonic motif E

(Figure 3A, lane 7); the in vivo splicing phenotypes of exonic motif

Figure 2. Splicing Silencers Identified via Functional

SELEX

(A) The 106 intronic and 52 exonic sequences that demon-

strated strong silencing activity (see text) were grouped into

six classes (A, B, C, D intronic; E, F exonic) based on hierar-

chical clustering for sequence similarity and are presented

as logos created using RNA structure logo (Gorodkin et al.,

1997; Schneider and Stephens, 1990). All individual unique

sequences, including those that did not fall into the six

classes, are listed in Table S1 with repeated sequences

deleted.

(B) Pre-mRNAs, each containing a specific representative

of one of the six classes (motif D, GGGCCACTTGGA, lane 1;

motif B, CGCTGGTCATTC, lane 2; motif C, GAGGATCA

GCTT, lane 3; motif A, CGTTAGAGTAGC, lane 4; motif F, CTT

AATTTTAGT, lane 6; motif E, TAGTTTAGTTAG, lane 7) of

silencer was spliced in vitro. Lane 5 is a splicing reaction

with a pre-mRNA that does not contain a splicing silencer.

The positions of splicing intermediates (free 50 exon and

lariat-30 exon) are indicated.

F and the four intronic elements were more modest

than those observed in vitro. In addition, random

sequences other than the selected silencers were

tested and they did not alter the 50 splice site choice

(Figure S4B).

Although reduction in the magnitude of regula-

tion in vivo could result from several potential vari-

ables, we hypothesized that the preference for use

of the proximal splice site might be stronger in vivo

than in vitro. In this case, weakening of the proximal

site would be predicted to maintain the preferential

use of the proximal site and might allow more effec-

tive silencing. Indeed, when we weakened the

proximal site to make it identical to the distal site,

proximal splicing predominated (Figure 3C, lane

5). Strikingly, the potency of all of the silencing

elements was greatly enhanced under these condi-

tions (Figure 3C, lanes 1–4, 6, 7); all now caused an

almost complete shift to distal splicing.

If the silencing elements functioned by occluding

or otherwise inactivating the affected 50 splice site,

it would be predicted that overall splicing would be drastically

impaired when the elements were present at both 50 splice sites

in the dual splice site construct. However, this expected

behavior was not observed. Remarkably, when the silencing

elements were inserted at both 50 splice sites, the wild-type

pattern of splicing was restored (Figures 3B and 3D). Impor-

tantly, there was no substantive reduction in the overall extent

of splicing; quantitation showed that the overall splicing effi-

ciency of the dual silencer constructs ranged from 83% (motif

E) to 100% (motif C) of that measured for the construct lacking

silencer elements.

We then asked if similar patterns could be observed in vitro. As

shown in Figure 3E, this was indeed the case; in the absence of

silencing elements, there was exclusive use of the proximal site,

and when silencing elements were placed at both sites the wild-

type pattern was restored. As was the case in vivo, the presence
Cell 135, 1224–1236, December 26, 2008 ª2008 Elsevier Inc. 1227



Figure 3. Effects of Silencing Elements Both

In Vivo and In Vitro

(A) HeLa cells were transfected with plasmids ex-

pressing the same pre-mRNAs as those assayed in

Figure 2 except that the 30 splice site was wild-type.

Splicing was assayed by semiquantitative RT-PCR;

products generated from use of the proximal or distal

50 splice sites are indicated. Lane 1, motif D; lane 2,

motif B; lane 3, motif C; lane 4, motif A; lane 5, no

silencer; lane 6, motif F; lane 7, motif E; lane 8, pre-

mRNA lacking a silencer in which the proximal 50

splice site was inactivated by mutation as in Figure 1A.

(B) In vivo splicing of pre-mRNAs identical to those in

(A) except that the silencing motif was inserted at posi-

tions +11 to +22 (intronic) or�18 to�7 (exonic) relative

to the distal 50 splice site as appropriate; thus each

silencing motif was present twice in each pre-mRNA

at the same position relative to both the proximal and

distal 50 splice sites. Lane designations are as in (A).

(C) In vivo splicing of pre-mRNAs with duplicated

weakened 50 splice sites (see text). As in (A) each

pre-mRNA contained one specific silencing motif

upstream or downstream of the proximal 50 splice

site. Lane designations are as in (A).

(D) In vivo splicing of pre-mRNAs with duplicated

weakened 50 splice sites with duplicated silencing

motifs. As in (B), the specific silencer motifs were in-

serted upstream or downstream as appropriate of

the distal 50 splice site when the same motif was

upstream or downstream of the proximal 50 splice

site. Lane designations are as in (A).

(E) Body-labeled dual 50 splice site pre-mRNAs iden-

tical to those assayed for splicing in vivo in (A) and

(B) except that the 30 splice site was inactivated by

mutation, were spliced in vitro. Each pre-mRNA con-

tained the specific silencing motifs described in the

legend to Figure 2 either upstream or downstream of

the proximal 50 splice site. Lane 1, motif D; lane 2, motif

B; lane 3, motif C; lane 4, motif A; lane 5, no silencer

motif; lane 6, motif F; lane 7, motif E. For lanes 8–14,

specific silencer motifs were inserted either upstream

or downstream of the distal 50 splice site as appro-

priate such that each pre-mRNA contained identical

silencer motifs at the same position relative to both

50 splice sites. Lane 8, motifs D; lane 9, motifs B;

lane 10, motifs C; lane 11, motifs A; lane 12, no

silencers; lane 13, motifs F; lane 14, motifs E.

(F) In vitro splicing of pre-mRNAs lacking the distal 50

splice site in the presence or absence of silencing

elements. The same pre-mRNAs as in (E), lanes 1–7,

lacking the distal 50 splice site with a wild-type 30 splice

site and with the specific silencer elements present

upstream or downstream of the remaining 50 splice

site were spliced in vitro. Lane 1, motif D; lane 2, motif

B; lane 3, motif A; lane 5, no silencer; lane 6, motif F;

lane 7, motif E.
1228 Cell 135, 1224–1236, December 26, 2008 ª2008 Elsevier Inc.



of silencing elements at both sites did not markedly affect the

overall level of splicing; quantitation showed that the overall

splicing efficiency of the dual silencer constructs ranged from

70% (motif E) to 92% (motif C) of that measured for the

pre-mRNA lacking silencer elements. An important and unex-

pected conclusion that emerged from both the in vivo and

in vitro experiments was that the silencers did not function by

preventing use of the affected site, but rather changed in some

way the ability of the affected site to compete with the unsilenced

site (see Discussion).

The results described above predicted that the silencing

elements would have little if any effect on splicing in single 50

splice site constructs (i.e., in the absence of a competing 50

splice site). As shown in Figure 3F, this prediction was borne

out by experiment; when the upstream 50 splice was removed,

none of the silencing elements had a pronounced effect on the

accumulation of spliced product.

Because the in vivo results indicated that the silencer elements

were more potent when the affected 50 splice site was weakened

(see Figure 3C), it was of interest to determine if this increased

activity would translate into observable kinetic effects on splicing

rate. Accordingly, we carried out time courses of splicing using

single 50 splice site constructs where the site was strong or

weak with or without each of the silencing elements; we also

measured the rate of splicing of each of these constructs in the

presence of a strong 30 splice site or when the 30 splice site

was weakened by purine substitutions into the polypyrimidine

tract (Tian and Maniatis, 1994) (Figure 4A). Figure 4B shows

the results of the 60 min time point for the panel of constructs

with two of the silencing elements (motifs D and E); Figures

4C–4F show the time course of splicing for all of the constructs,

and Figure 4G summarizes the data obtained at the 40 min time

points.

The data reveal several interesting points. First, there were

perceptible but subtle decreases in splicing rate in the presence

of any of silencing elements when both splice sites were strong

(Figure 4C); essentially the same kinetics were observed when

only the 30 splice site was weakened (Figure 4D). Second,

when the 50 splice site was weakened in the presence of the

strong 30 splice site, there was a marked decrease in splicing

rate observed with four of the silencing elements (D, B, A, and

E); this effect was not observed with motifs C and F (Figure 4E).

Third, weakening of the 30 splice site amplified the kinetic effects

of the four intronic silencing elements, but had little if any effect

on the two exonic silencers (Figure 4F). Because recognition of

the weakened 30 splice site relies on participation of the 50 splice

site (e.g., Barabino et al., 1990), the simplest explanation for

these results is that the intronic silencers make a weak 50 splice

site less able to facilitate loading of factors at the 30 splice site.

Taken as a whole, the kinetic data strongly suggest that the

silencing elements exert their effects through modulation of the

affected 50 splice site and when that site is strong, the effects

on splicing are essentially invisible.

Mechanism of Silencer Function
Because recognition at the 50 splice site by U1 snRNP is almost

surely the first step required for splicing in general (e.g., Grabow-

ski et al., 1985; Jamison et al., 1992; Seraphin and Rosbash,
1989), it seemed unlikely that the silencing elements could func-

tion by affecting this step of the reaction (Reed and Maniatis,

1986). Indeed, when we measured U1 snRNP occupancy of

the strong 50 splice site by psoralen crosslinking or immunopre-

cipitation with anti-U1A antisera, we did not observe any differ-

ences between RNAs lacking or containing any of the silencer

elements (data not shown). Although these approaches are

useful for measuring the extent of U1 snRNP occupancy, they

are not informative regarding potential differences in the manner

in which U1 snRNP engages the affected 50 splice site. To

address this issue, we examined 50 splice site recognition in

the presence or absence of silencing elements using a nuclease

protection assay of RNAs containing a single labeled phosphate

50 of the uridine in the Gp*U at the 50 splice site (Figure 5A and

Maroney et al., 2000b). We have shown previously (Maroney

et al., 2000a) that the binding of U1 snRNP to the strong 50 splice

site in the absence of any known splicing control element

produces a characteristic pattern of nuclease resistant frag-

ments (Figure 5B, none). Essentially identical patterns of protec-

tion were observed in the presence of silencing elements C and F

(Figure 5B, motifs C and F) indicating that these motifs did not

markedly perturb U1 snRNP binding, at least as judged by this

assay. However, strikingly distinct patterns of protection were

observed in the presence of silencing elements A, B, D, and E.

All of the protections both in the control RNA and present in

RNAs containing silencers B, C, D, and F were strictly dependent

upon U1 snRNP binding, because no protected fragments were

observed when the 50 end of U1 snRNA was blocked with

a complementary 20 Ome oligonucleotide. Extensive analyses,

including RNA affinity approaches, have failed to reveal any

candidate proteins that bind to these silencing elements (data

not shown); observations that suggested the possibility that

the U1 snRNP/50 splice site interaction itself might be altered.

Figure 5C provides direct evidence that this is the case for

silencing element D; the distinctive pattern of protected frag-

ments observed in nuclear extract was closely recapitulated

using highly purified U1 snRNP (Hochleitner et al., 2005)

(Figure 5C). The fact that the control RNA and two of the silencing

elements (motifs C and F) yield ‘‘wild type’’ patterns of protection

clearly indicates that not all sequences elicit distinct nuclease

resistant species and highlights the functional significance of

those that do (see Discussion).

Intronic silencer A and exonic silencer E also showed altered

patterns in the nuclease protection assay (Figure 5B, motifs A

and E, lanes +�), but with these RNAs we observed accumula-

tions of U1 snRNP-independent fragments (Figure 5B, motifs A

and E, lane ++). Both of these silencers contain UAG motifs,

characteristic of potential hnRNP A1 binding sites (e.g., Burd

and Dreyfuss, 1994) and RNA affinity purification indicated that

RNAs containing either silencer bound hnRNP A1 (Figure S5A

and data not shown). Further analyses were conducted with

exonic silencer motif E. Figures 6A and 6B show that a GST-

hnRNP A1 fusion protein (Blanchette and Chabot, 1999) specif-

ically pulled down U1 snRNP only when motif E was present and

only when U1 snRNP was allowed to bind to the 50 splice site.

Because the fusion protein specifically crosslinks to an RNA

containing element E (Figure 6C), it was possible to perform

the reciprocal pull down. Figure 6D shows that the crosslinked
Cell 135, 1224–1236, December 26, 2008 ª2008 Elsevier Inc. 1229



Figure 4. Individual Silencer Motifs Have Distinct Kinetic Effects on Splicing of Single 50 Splice Site Pre-mRNAs

(A) Schematic representation of pre-mRNAs used to measure kinetic effects on splicing of individual silencer motifs. The strong and weak 50 splice sites are the

same as in Figure 1. The strong 30 splice site construct has an unaltered polypyrimidine tract whereas the weak 30 splice site contains purine substitutions in the

polypyrimidine tract (Tian and Maniatis, 1994). For each panel of four constructs, individual silencing motifs as described in the legend to Figure 2 were inserted

upstream or downstream of the 50 splice site as appropriate.
1230 Cell 135, 1224–1236, December 26, 2008 ª2008 Elsevier Inc.



Figure 5. Nuclease Protection Analyses Reveal that Some Silencing Motifs Alter the U1 snRNP/50 Splice Site Complex

(A) The nuclease protection experimental strategy is shown schematically. RNA molecules containing a uniquely labeled phosphate are incubated with protein(s).

After binding, the RNAs are digested with micrococcal nuclease and nuclease-resistant fragments are visualized after fractionation on denaturing gels (Maroney

et al., 2000b).

(B) RNA transcripts spanning �45 to +45 relative to the 50 splice site were site specifically labeled at the phosphate between the G*U of the 50 splice site. Each

transcript contained a specific silencing motif as indicated or lacked any motif (lanes none). After incubation in HeLa cell nuclear extract, reactions were diluted

and digested with micrococcal nuclease (see Experimental Procedures). Following deproteinization, resistant fragments were visualized after gel fractionation.

NE is nuclear extract and anti-U1 is a 20Ome oligonucleotide which hybridizes to the 50 end of U1 snRNA. The positions of markers of known size are indicated.

(C) Nuclease protection of control or motif D containing RNAs using purified U1 snRNP. The site specifically labeled RNAs in (B) corresponding to none and motif

D were either incubated in nuclear extract, NE (lanes 1, 2 and 5, 6) or with purified U1 snRNP (lanes 3, 4 and 7, 8) in the absence (lanes 1, 3 and 5, 7) or presence

(lanes 2, 4 and 6, 8) of the anti-U1 20Ome oligonucleotide. Following incubation, reactions were processed as in (B) with some modifications (see Supplemental

Data).
protein was immunoprecipitated by anti-U1A antisera but not by

control antisera. These results provide direct evidence that U1

snRNP and hnRNP A1 bind to the same RNA molecules.

DISCUSSION

Here, we have employed a functional SELEX strategy in vitro to

identify intronic and exonic sequence elements that silence

nearby 50 splice sites. Importantly, the silencers we character-

ized function both in vitro and in vivo. The data support several

conclusions. First, effective silencing can be achieved without

occluding or inactivating the affected site. Second, two of the
six motifs (B and D) recovered from the selection might function

idiosyncratically because they are not enriched in or near pseu-

doexons compared with real exons, yet still act as silencers in

the construct used for selection. This result suggests the possi-

bility that many splicing control elements are relevant only in their

specific pre-mRNAs and thus invisible to informatic techniques

that rely on statistical analyses of motif frequencies. Third, infor-

matic analyses indicate that four of the identified motifs (A, C, E,

and F) play a role in suppressing the use of both pseudo 50 splice

sites and pseudoexons (see Supplemental Data). Fourth, the

results strongly suggest that intrinsic features of RNA sequences

(e.g., motif D and perhaps motifs B, C, and F) themselves
(B) In vitro splicing of the panel of four constructs either lacking any silencer element (no silencer, lanes 1–5) or containing either intronic silencing motif D (lanes

6–10) or exonic silencing motif E (lanes 11–15). Autoradiograms of the 60 min time points of each reaction are shown.

(C–F) Time courses of splicing of the indicated pre-mRNAs containing or lacking the indicated silencing motif. Each data point is the average of three independent

experiments. The percentage of splicing of indicated pre-mRNAs lacking any silencer motif was set to 100%. Values were determined by quantitating the extent

of splicing [product/(product + precursor)] for each reaction and are expressed as percent of the extent of splicing of a pre-mRNA lacking any silencing elements.

(G) Quantitation of the extent of splicing at 40 min time points from three independent time courses for each panel of pre-mRNAs containing the indicated

silencing motif. Values expressed as percent were calculated as in (C)–(F). Error bars represent standard deviations of quantified values.
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Figure 6. U1 snRNP and hnRNP A1 Bind Simultaneously to the 50 Splice Site Region in the Presence of Silencer Motif E
(A) GST-hnRNP A1 pull down of U1 snRNA only in the presence of silencer motif E. Unlabeled RNA transcripts composed of regions �45 to +45 relative to the

50 splice site either lacking a silencing motif (lanes 2, 3) or containing silencing motif E (lanes 4, 5) were incubated in HeLa cell nuclear extract (lanes 2–7) supple-

mented with 500 ng GST-hnRNP A1 fusion protein (Blanchette and Chabot, 1999) as indicated (lanes 2–6) either in the absence (lanes 2, 4, 6, 7, 8) or presence

(lanes 3, 5) of a 20Ome oligonucleotide complementary to the 50 end of U1 snRNA. In lanes 6, 7, and 8, no RNA was added. Following incubation, reactions were

diluted then bound and eluted from glutathione beads. The eluates were deproteinized and primer extension was performed (Takacs, et al., 1988) with an

oligonucleotide complementary to bases 62 to 78 of U1 snRNA. Input (lane 1) denotes a primer extension reaction on RNA extracted from 25% of an aliquot

of nuclear extract equivalent to that used in lanes 2–8.

(B) Exactly as in (A) except that after elution from the glutathione beads, proteins were fractionated on a denaturing polyacrylamide gel, blotted, and probed with

anti-U1A antibody.

(C) The same transcripts described in (A), either lacking a silencer (control, lanes 1, 2, 3, 4) or containing exonic silencer motif E, were site-specifically labeled at

position�14 relative to the splice site. Transcripts were then incubated with nuclear extract (GST-hnRNP A1, lanes 1 and 5) or presupplemented with increasing

amounts of recombinant GST-hnRNP A1 proteins (lane 2, 3, 4 and 6, 7, 8) and UV crosslinked to detect interacting proteins. Proteins were selected with

glutathione beads, digested with RNases, and resolved by SDS-PAGE and visualized by autoradiography (see Figure S5B for the total input proteins before

selection). The amount of GST-hnRNP A1 added: 125 ng (lanes 2,6), 250 ng (lanes 3, 7), 500 ng (lanes 4, 8).

(D) Aliquots of the UV cross-linking reactions (lanes 4 and 8 from Figure 7C) were immunoprecipitated with either anti-U1A antiserum or normal rabbit serum.

Bound complexes were then digested with RNases, passed through glutathione sepharose, and eluted with reduced glutathione before fractionation by

SDS-PAGE. Labeled proteins were visualized by autoradiography.
(without the participation of ancillary proteins) can influence the

ability of 50 splice sites to compete with each other. Fifth, we

demonstrate that silencers can alter the U1 snRNP/50 splice

site complex in a manner that renders the affected site to be at

a competitive disadvantage with respect to 50 splice sites occu-

pied by an ‘‘unaltered’’ U1 snRNP/50 splice site complex (Fig-

ure 7). Sixth, and perhaps most importantly, we show that effects

on non-rate-limiting kinetic steps in splicing can lead to dramatic

shifts in splice site choice.

In our experimental design, we focused on one construct

under one set of conditions in extracts prepared from one cell
1232 Cell 135, 1224–1236, December 26, 2008 ª2008 Elsevier Inc.
type and analyzed only those motifs that gave the strongest

phenotypes. It is important to note that we ignored sequences

that produced substantive but less dramatic splice site switch-

ing. Although we do not know how many sequence motifs would

yield intermediate phenotypes, it seems likely that it is much

larger than six. Furthermore, only one intronic and one exonic

position were analyzed. It will be of interest to determine which

sequences would emerge if the selections were carried out

with the randomized sequence inserted at different positions or

in different contexts. It will also be of interest to determine if

sequences that could overcome the silencing effects could be



selected in silencer containing constructs. Despite the inherent

limitations of our current study, the results suggest that the regu-

lation of splicing might be remarkably subtle and the ‘‘splicing

code’’ (e.g., Black, 2003; Fu, 2004; Hertel, 2008; Matlin et al.,

2005) correspondingly complex.

Intuitively, it would be expected that the most effective splicing

silencers would sequester or otherwise inactivate the affected

splice site. The silencers we have selected clearly do not function

in this manner because the affected site remains fully functional

but is not used when a competing site is present. When inter-

preted from a kinetic perspective, our observations rule out

any scenario in which the silencers affect a slow or rate-limiting

step. If this were the case, presence of the silencers would cause

reductions in the ability of the affected site to function propor-

tional to the extent of activation of the competing site.

To account for the observed data, the silencers must affect

a fast kinetic step to allow action of the silencer without substan-

tive effects on the overall reaction rate. The fast reaction step has

to be more than one order of magnitude faster than the slow

reaction step when slowed by the silencer, and, consequently,

several orders of magnitude faster than the rate-limiting step

when unaffected by the silencer. Introduction of the silencers

at both splice sites would slow the fast reaction step at both sites

and re-establish the original pattern of splice site selection, as we

have observed (see Figures 3 and 7).

We suggest that such a fast step could be the joining of 50 and

30 splice sites in a complex committed to splice site choice. This

interpretation is consistent with the findings of Lim and Hertel

Figure 7. Model for Dynamic Regulation of

Splice Site Choice by Splicing Silencers

(A) U1 snRNP bound to the proximal strong 50

splice site (hexagon) adopts a conformation that

can efficiently engage U2 snRNP. In this situation,

U1 snRNP bound to the strong site outcompetes

U1 snRNP bound at the weak site (pentagon)

resulting in the use of the proximal site. Relative

efficiencies of engagement of U1 and U2 snRNPs

are depicted schematically by the thickness of the

lines connecting them; the line from the unused

site is dashed.

(B) In the presence of a splicing silencer adjacent

to the proximal site, the interaction of U1 snRNP

(square) is altered such that it less efficiently

interacts with U2 snRNP. Accordingly, use of the

distal site is observed. When both splice sites

are ‘‘silenced’’ simultaneously (C), the proximal site

regains its competitive advantage; in both illustra-

tions, the line from the unused site is dashed.

(2004) who showed that commitment to

the general splicing pathway and

commitment to specific splice site pairing

are kinetically separable. Specifically,

they demonstrated that commitment to

splice site pairing became irreversible

only upon formation of A complex, when

U2 snRNP is locked onto the pre-

mRNA. We suggest that the silencers
function by altering the way in which U1 snRNP engages the 50

splice site in such a way that it is less able to efficiently engage

U2 snRNP, and thus the unaffected site obtains a competitive

advantage. This interpretation is consistent with our nuclease

protection data (see Figure 5) and with recent studies using

site-directed hydroxyl-radical footprinting (Dönmez et al., 2007)

that demonstrated U1 and U2 snRNPs are in close proximity in

early spliceosomal complexes. These studies suggested that

the two snRNPs engage in a direct spatially fixed interaction

wherein the 50 end of U2 snRNP is located on a specific ‘‘side’’

of U1 snRNP. Any distortion or misorientation of U1 snRNP

caused by a silencer could negatively affect its ability to establish

proper contact with U2 snRNP. The notion that appropriate

alignment of U1 and U2 snRNPs early in spliceosome assembly

is crucial for commitment to splice site choice provides

a possible explanation for the observation that some of the

silencers affect ‘‘weak’’ 50 splice sites more than ‘‘strong’’

ones. We suggest that U1 snRNP bound to ‘‘weak’’ sites (i.e.,

those with fewer base pairs) are already somewhat ‘‘misaligned’’

and thus more susceptible to further distortion by the silencers.

In addition, it seems likely that hnRNP A1 might exert its

silencing function in a similar manner; that is, by affecting the

alignment of U1 and U2 snRNPs. There have been several

distinct models proposed for the mechanism by which hnRNP

A1 can silence (reviewed in Black, 2003; Black and Graveley,

2006; Matlin et al., 2005). Although all of these mechanisms

might be valid in certain contexts, our finding that the protein

binds simultaneously with U1 snRNP suggests that it might
Cell 135, 1224–1236, December 26, 2008 ª2008 Elsevier Inc. 1233



directly interfere with the ability of U1 snRNP to interact correctly

with U2 snRNP, either by altering the conformation of the U1

snRNP particle or perhaps by shielding important surfaces on

the snRNP necessary for establishing correct alignment with

U2 snRNP.

In summary, we suspect that a large fraction of examples of

alternative and regulated splicing events will be dictated by kinetic

parameters similar to the ones we have described. In this regard,

there are several examples where the function of splicing control

elements is only evident in the presence of competing splice sites

(e.g., Cheah et al., 2007; Lam et al., 2003; Reed and Maniatis,

1986) and additional poorly understood examples where

sequence context determines the use of competing sites (e.g.,

Chen and Helfman, 1999; Haj Khelil et al., 2008; Krawczak

et al., 2007; Manabe et al., 2007; Mayeda and Ohshima, 1988;

Nelson and Green, 1988; O’Neill et al., 1998, Ule et al., 2006).

In any multi-intronic pre-mRNA, each internal 50 splice site is in

competition with multiple 50 splice sites as is each 30 splice site.

Myriad cross-exon and cross-intron interactions ensure that

correct sites are paired. However, it is not hard to imagine that

minor perturbations of any of these interactions (e.g., by

tissue-specific or developmental-stage-specific changes in the

levels of splicing factors [Karni et al., 2007; Olson et al., 2007;

Park et al., 2004]), rates of transcription, and/or chromatin struc-

ture (reviewed in House and Lynch, 2008; Kornblihtt, 2006;

Maniatis and Reed, 2002) could alter a delicate kinetic balance

and result in the very complex patterns of splice site choice

that are observed. Such a view makes sense from an evolu-

tionary perspective in that small advantageous changes in

intronic or exonic sequence could rapidly lead to the expansion

of proteomic diversity seen in higher eukaryotes.

EXPERIMENTAL PROCEDURES

Pre-mRNA Substrates and In Vitro Splicing

The construction of pre-mRNA templates containing duplicated 50 splice sites

comprised of portions of the rat preprotachykinin and Drosophila doubesex

gene is described in detail in the Supplemental Data, as is the introduction

of fully randomized regions either +11 to +22 or�18 to�7 relative to the prox-

imal 50 splice site. All in vitro splicing reactions were conducted with body

labeled substrate for 60 min in HeLa cell nuclear extract (Dignam et al.,

1983) as described elsewhere (Maroney et al., 2000a) except where indicated

differently in the text or figure legends. For the functional SELEX studies, the

entire randomized pools of templates were transcribed; full-length transcripts

were gel purified and bound to purified U1 snRNP in NET-2 buffer. After immu-

noprecipitation with polyclonal anti-U1A antibody (Kambach and Mattaj,

1992), pre-mRNAs were deproteinized and added to in vitro splicing reactions.

For debranching, lariat-30 exon intermediates were gel purified and incubated

with HeLa cell cytoplasmic S100 extract under splicing conditions for 30 min at

30�C as described previously (Ruskin and Green, 1985).

In Vivo Splicing Analysis

Full-length DNA fragments were cloned into pcDNA3.1 (Invitrogen) under the

control of the CMV promoter and transfected into HeLa cells using Lipofect-

amine2000 (Invitrogen) according to the manufacturer’s protocol. Twenty-

four hours after transfection, the extent and position of splicing was deter-

mined by semiquantitative RT-PCR as described in the Supplemental Data.

Nuclease Protection Assays

RNA fragments spanning the region from�45 to + 45 relative to the proximal 50

splice site containing each of the individual silencer motifs or lacking any

silencer were uniquely labeled at G*U of the 50 splice site. Site-specific
1234 Cell 135, 1224–1236, December 26, 2008 ª2008 Elsevier Inc.
labeling, oligonucleotide inhibition, and nuclease protection assays followed

the procedures described by Maroney et al. (2000a, 2000b). For details, see

the Supplemental Data.

GST-hnRNP A1 Pull Downs and U1 snRNP Immunoprecipitation

Incubations containing nuclear extract either with or without added GST-

hnRNP A1 as indicated in the figure legends were mixed with prewashed

glutathione sepharose 4B (Amersham Biosciences) in NET-2 for 1 hr at 4�C.

The bound complexes were washed three times, eluted with reduced

glutathione (50 mM glutathione in 50 mM Tris-HCl [pH 8.0]), and subjected

to further analysis.

For the analysis of cross-linking to site-specifically labeled RNAs, reactions

were irradiated with 254 nm UV light (see Supplemental Data) and then

selected with glutathione sepharose as described above. The eluant was

digested with 2 mg RNase A at 37�C for 30 min before proteins were fraction-

ated on 10% polyacrylamide SDS gels.

For immunoprecipitation of cross-linked proteins, incubations, treated as

above with UV light, were mixed with polyclonal anti-U1A antibody (Kambach

and Mattaj, 1992) or control antibody, prebound to protein A agarose beads in

NET-2 buffer supplemented with RNasin (Promega) for 1 hr at 4�C. The bound

complexes were washed three times, digested with RNase A, and then

selected on glutathione sepharose. Proteins were eluted from the beads at

95�C with SDS running buffer. Isolated proteins were then resolved via SDS-

PAGE and visualized by autoradiography.

SUPPLEMENTAL DATA

Supplemental Data include five figures and two tables and can be

found with this article online at http://www.cell.com/supplemental/S0092-

8674(08)01384-6.
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