173 research outputs found

    Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity?

    Get PDF
    Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions

    PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews

    Get PDF
    The methods and results of systematic reviews should be reported in sufficient detail to allow users to assess the trustworthiness and applicability of the review findings. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement was developed to facilitate transparent and complete reporting of systematic reviews and has been updated (to PRISMA 2020) to reflect recent advances in systematic review methodology and terminology. Here, we present the explanation and elaboration paper for PRISMA 2020, where we explain why reporting of each item is recommended, present bullet points that detail the reporting recommendations, and present examples from published reviews. We hope that changes to the content and structure of PRISMA 2020 will facilitate uptake of the guideline and lead to more transparent, complete, and accurate reporting of systematic reviews

    Brain Performance versus Phase Transitions

    Get PDF
    We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification—in fact, we considered from a fully connected network to the Homo sapiens connectome—showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.The authors acknowledge support from the Spanish Ministry of Economy and Competitiveness under the project FIS2013-43201-P

    Strengthening the Reporting of Observational Studies in Epidemiology-Nutritional Epidemiology (STROBE-nut): An Extension of the STROBE Statement.

    Get PDF
    Concerns have been raised about the quality of reporting in nutritional epidemiology. Research reporting guidelines such as the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement can improve quality of reporting in observational studies. Herein, we propose recommendations for reporting nutritional epidemiology and dietary assessment research by extending the STROBE statement into Strengthening the Reporting of Observational Studies in Epidemiology-Nutritional Epidemiology (STROBE-nut).Recommendations for the reporting of nutritional epidemiology and dietary assessment research were developed following a systematic and consultative process, coordinated by a multidisciplinary group of 21 experts. Consensus on reporting guidelines was reached through a three-round Delphi consultation process with 53 external experts. In total, 24 recommendations for nutritional epidemiology were added to the STROBE checklist.When used appropriately, reporting guidelines for nutritional epidemiology can contribute to improve reporting of observational studies with a focus on diet and health

    Effects of body position on autonomic regulation of cardiovascular function in young, healthy adults

    Get PDF
    Background: Analysis of rhythmic patterns embedded within beat-to-beat variations in heart rate (heart rate variability) is a tool used to assess the balance of cardiac autonomic nervous activity and may be predictive for prognosis of some medical conditions, such as myocardial infarction. It has also been used to evaluate the impact of manipulative therapeutics and body position on autonomic regulation of the cardiovascular system. However, few have compared cardiac autonomic activity in supine and prone positions, postures commonly assumed by patients in manual therapy. We intend to redress this deficiency. Methods: Heart rate, heart rate variability, and beat-to-beat blood pressure were measured in young, healthy non-smokers, during prone, supine, and sitting postures and with breathing paced at 0.25 Hz. Data were recorded for 5 minutes in each posture: Day 1 - prone and supine; Day 2 - prone and sitting. Paired t-tests or Wilcoxon signed-rank tests were used to evaluate posture-related differences in blood pressure, heart rate, and heart rate variability. Results: Prone versus supine: blood pressure and heart rate were significantly higher in the prone posture (p < 0.001). Prone versus sitting: blood pressure was higher and heart rate was lower in the prone posture (p < 0.05) and significant differences were found in some components of heart rate variability. Conclusion: Cardiac autonomic activity was not measurably different in prone and supine postures, but heart rate and blood pressure were. Although heart rate variability parameters indicated sympathetic dominance during sitting (supporting work of others), blood pressure was higher in the prone posture. These differences should be considered when autonomic regulation of cardiovascular function is studied in different postures

    Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility

    Get PDF
    Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility

    Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy

    Get PDF
    To identify transcriptional profiles predictive of the clinical benefit of cisplatin and fluorouracil (CF) chemotherapy to gastric cancer patients, endoscopic biopsy samples from 96 CF-treated metastatic gastric cancer patients were prospectively collected before therapy and analyzed using high-throughput transcriptional profiling and array comparative genomic hybridization. Transcriptional profiling identified 917 genes that are correlated with poor patient survival after CF at P<0.05 (poor prognosis signature), in which protein synthesis and DNA replication/recombination/repair functional categories are enriched. A survival risk predictor was then constructed using genes, which are included in the poor prognosis signature and are contained within identified genomic amplicons. The combined expression of three genes—MYC, EGFR and FGFR2—was an independent predictor for overall survival of 27 CF-treated patients in the validation set (adjusted P=0.017), and also for survival of 40 chemotherapy-treated gastric cancer patients in a published data set (adjusted P=0.026). Thus, combined expression of MYC, EGFR and FGFR2 is predictive of poor survival in CF-treated metastatic gastric cancer patients

    A Systematic Review of Cost-of-Illness Studies of Multimorbidity

    Get PDF
    Objectives: The economic burden of multimorbidity is considerable. This review analyzed the methods of cost-of-illness (COI) studies and summarized the economic outcomes of multimorbidity. Methods: A systematic review (2000–2016) was performed, which was registered with Prospero, reported according to PRISMA, and used a quality checklist adapted for COI studies. The inclusion criteria were peer-reviewed COI studies on multimorbidity, whereas the exclusion criterion was studies focusing on an index disease. Extracted data included the definition, measure, and prevalence of multimorbidity; the number of included health conditions; the age of study population; the variables used in the COI methodology; the percentage of multimorbidity vs. total costs; and the average costs per capita. Results: Among the 26 included articles, 14 defined multimorbidity as a simple count of 2 or more conditions. Methodologies used to derive the costs were markedly different. Given different healthcare systems, OOP payments of multimorbidity varied across countries. In the 17 and 12 studies with cut-offs of ≥2 and ≥3 conditions, respectively, the ratios of multimorbidity to non-multimorbidity costs ranged from 2–16 to 2–10. Among the ten studies that provided cost breakdowns, studies with and without a societal perspective attributed the largest percentage of multimorbidity costs to social care and inpatient care/medicine, respectively. Conclusion: Multimorbidity was associated with considerable economic burden. Synthesising the cost of multimorbidity was challenging due to multiple definitions of multimorbidity and heterogeneity in COI methods. Count method was most popular to define multimorbidity. There is consistent evidence that multimorbidity was associated with higher costs

    Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats

    Get PDF
    One of the major challenges in management of spinal cord injury (SCI) is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find such biomarkers we performed quantitative liquid chromatography-mass spectrometry (LC-MS/MS) analyses of cerebrospinal fluid (CSF) collected from rats 24 h after either a moderate or severe SCI. We identified a panel of 42 putative biomarkers of SCI, 10 of which represent potential biomarkers of SCI severity. Three of the candidate biomarkers, Ywhaz, Itih4, and Gpx3 were also validated by Western blot in a biological replicate of the injury. The putative biomarkers identified in this study may potentially be a valuable tool in the assessment of the extent of spinal cord damage

    How Structure Determines Correlations in Neuronal Networks

    Get PDF
    Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks
    corecore