79 research outputs found
Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio
Recommended from our members
Aiming toWards Evidence baSed inTerpretation of Cardiac biOmarkers in patients pResenting with chest pain using Point of Care Testing (WESTCOR-POC): study design.
OBJECTIVES: Patients presenting with symptoms suggestive of acute coronary syndrome (ACS) contribute to a high workload and overcrowding in the Emergency Department (ED). Accelerated diagnostic protocols for non-ST-elevation myocardial infarction have proved challenging to implement. One obstacle is the turnaround time for analyzing high-sensitivity cardiac troponin (hs-cTn). In the WESTCOR-POC study (Clinical Trials number NCT05354804) we aim to evaluate safety and efficiency of a 0/1 h hs-cTn algorithm utilizing a hs-cTnI point of care (POC) instrument in comparison to central laboratory hs-cTnT measurements. DESIGN: This is a prospective single-center randomized clinical trial aiming to include 1500 patients admitted to the ED with symptoms suggestive of ACS. Patients will receive standard investigations following the European Society of Cardiology 0/1h protocols for centralized hs-cTnT measurements or the intervention using a 0/1h POC hs-cTnI algorithm. Primary end-points are 1) Safety; death, myocardial infarction or acute revascularization within 30 days 2) Efficiency; length of stay in the ED, 3) Cost- effectiveness; total episode cost, 4) Patient satisfaction, 5) Patient symptom burden and 6) Patients quality of life. Secondary outcomes are 12-months death, myocardial infarction or acute revascularization, percentage discharged after 3 and 6 h, total length of hospital stay and all costs related to hospital contact within 12 months. CONCLUSION: Results from this study may facilitate implementation of POC hs-cTn testing assays and accelerated diagnostic protocols in EDs, and may serve as a valuable resource for guiding future investigations for the use of POC high sensitivity troponin assays in outpatient clinics and prehospital settings
Lypd6 Enhances Wnt/β-Catenin Signaling by Promoting Lrp6 Phosphorylation in Raft Plasma Membrane Domains
Wnt/beta-catenin signaling plays critical roles during embryogenesis, tissue homeostasis, and regeneration. How Wnt-receptor complex activity is regulated is not yet fully understood. Here, we identify the Ly6 family protein LY6/PLAUR domain-containing 6 (Lypd6) as a positive feedback regulator of Wnt/beta-catenin signaling. lypd6 enhances Wnt signaling in zebrafish and Xenopus embryos and in mammalian cells, and it is required for wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Lypd6 is GPI anchored to the plasma membrane and physically interacts with the Wnt receptor Frizzled8 and the coreceptor Lrp6. Biophysical and biochemical evidence indicates that Lypd6 preferentially localizes to raft membrane domains, where Lrp6 is phosphorylated upon Wnt stimulation. lypd6 knockdown or mislocalization of the Lypd6 protein to nonraft membrane domains shifts Lrp6 phosphorylation to these domains and inhibits Wnt signaling. Thus, Lypd6 appears to control Lrp6 activation specifically in membrane rafts, which is essential for downstream signaling.The GenBank accession number for the partial Xenopus laevis lypd6 complementary DNA reported in this paper is KF042353
Early Development of the Central and Peripheral Nervous Systems Is Coordinated by Wnt and BMP Signals
The formation of functional neural circuits that process sensory information requires coordinated development of the central and peripheral nervous systems derived from neural plate and neural plate border cells, respectively. Neural plate, neural crest and rostral placodal cells are all specified at the late gastrula stage. How the early development of the central and peripheral nervous systems are coordinated remains, however, poorly understood. Previous results have provided evidence that at the late gastrula stage, graded Wnt signals impose rostrocaudal character on neural plate cells, and Bone Morphogenetic Protein (BMP) signals specify olfactory and lens placodal cells at rostral forebrain levels. By using in vitro assays of neural crest and placodal cell differentiation, we now provide evidence that Wnt signals impose caudal character on neural plate border cells at the late gastrula stage, and that under these conditions, BMP signals induce neural crest instead of rostral placodal cells. We also provide evidence that both caudal neural and caudal neural plate border cells become independent of further exposure to Wnt signals at the head fold stage. Thus, the status of Wnt signaling in ectodermal cells at the late gastrula stage regulates the rostrocaudal patterning of both neural plate and neural plate border, providing a coordinated spatial and temporal control of the early development of the central and peripheral nervous systems
Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas
[Abstract] Genes of the Wnt and Frizzled class, expressed in HNSCC tissue and cell lines, have an established role in cell morphogenesis and differentiation, and also they have oncogenic properties. We studied Wnt and Fz genes as potential tumor-associated markers in HNSCC by qPCR. Expression levels of Wnt and Fz genes in 22 unique frozen samples from HNSCC were measured. We also assessed possible correlation between the expression levels obtained in cancer samples in relation to clinicopathologic outcome. Wnt-1 was not expressed in the majority of the HNSCC studied, whereas Wnt-5A was the most strongly expressed by the malignant tumors. Wnt-10B expression levels were related with higher grade of undifferentiation. Related to Fz genes, Fz-5 showed more expression levels in no-affectation of regional lymph nodes. Kaplan–Meier survival analyses suggest a reduced time of survival for low and high expression of Wnt-7A and Fz-5 mRNA, respectively. qPCR demonstrated that HNSCC express Wnt and Fz members, and suggested that Wnt and Fz signaling is activated in HNSCC cells
The Role of Glypicans in Wnt Inhibitory Factor-1 Activity and the Structural Basis of Wif1's Effects on Wnt and Hedgehog Signaling
Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling
- …