265 research outputs found

    Classical diffusion in double-delta-kicked particles

    Full text link
    We investigate the classical chaotic diffusion of atoms subjected to {\em pairs} of closely spaced pulses (`kicks) from standing waves of light (the 2ÎŽ2\delta-KP). Recent experimental studies with cold atoms implied an underlying classical diffusion of type very different from the well-known paradigm of Hamiltonian chaos, the Standard Map. The kicks in each pair are separated by a small time interval Ï”â‰Ș1\epsilon \ll 1, which together with the kick strength KK, characterizes the transport. Phase space for the 2ÎŽ2\delta-KP is partitioned into momentum `cells' partially separated by momentum-trapping regions where diffusion is slow. We present here an analytical derivation of the classical diffusion for a 2ÎŽ2\delta-KP including all important correlations which were used to analyze the experimental data. We find a new asymptotic (t→∞t \to \infty) regime of `hindered' diffusion: while for the Standard Map the diffusion rate, for K≫1K \gg 1, D∌K2/2[1−J2(K)..]D \sim K^2/2[1- J_2(K)..] oscillates about the uncorrelated, rate D0=K2/2D_0 =K^2/2, we find analytically, that the 2ÎŽ2\delta-KP can equal, but never diffuses faster than, a random walk rate. We argue this is due to the destruction of the important classical `accelerator modes' of the Standard Map. We analyze the experimental regime 0.1â‰ČKÏ”â‰Č10.1\lesssim K\epsilon \lesssim 1, where quantum localisation lengths L∌ℏ−0.75L \sim \hbar^{-0.75} are affected by fractal cell boundaries. We find an approximate asymptotic diffusion rate D∝K3Ï”D\propto K^3\epsilon, in correspondence to a D∝K3D\propto K^3 regime in the Standard Map associated with 'golden-ratio' cantori.Comment: 14 pages, 10 figures, error in equation in appendix correcte

    NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    Get PDF
    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future need

    Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells

    Get PDF
    BACKGROUND: Astrocytomas are the most common type of primary central nervous system tumors. They are frequently associated with genetic mutations that deregulate cell cycle and render these tumors resistant to apoptosis. STAT3, signal transducer and activator of transcription 3, participates in several human cancers by inducing cell proliferation and inhibiting apoptosis and is frequently activated in astrocytomas. METHODS: RNA interference was used to knockdown STAT3 expression in human astrocytes and astrocytoma cell lines. The effect of STAT3 knockdown on apoptosis, cell proliferation, and gene expression was then assessed by standard methods. RESULTS: We have found that STAT3 is constitutively activated in several human astrocytoma cell lines. Knockdown of STAT3 expression by siRNA induces morphologic and biochemical changes consistent with apoptosis in several astrocytoma cell lines, but not in primary human astrocytes. Moreover, STAT3 is required for the expression of the antiapoptotic genes survivin and Bcl-xL in the A172 glioblastoma cell line. CONCLUSION: These results show that STAT3 is required for the survival of some astrocytomas. These studies suggest STAT3 siRNA could be a useful therapeutic agent for the treatment of astrocytomas

    Gymnemic acids inhibit hyphal growth and virulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine

    Tertiary sequence of deformation in a thin-skinned/thick-skinned collision belt: The Zagros Folded Belt (Fars, Iran)

    Get PDF
    International audienceWe describe how thin-skinned/thick-skinned deformation in the Zagros Folded Belt interacted in time and space. Homogeneous fold wavelengths (15.8 ± 5.3 km), tectono-sedimentary evidence for simultaneous fold growth in the past 5.5 ± 2.5 Ma, drainage network organization, and homogeneous peak differential stresses (40 ± 15 MPa) together point to buckling as the dominant process responsible for cover folding. Basin analysis reveals that basement inversion occurred ∌20 Ma ago as the Arabia/Eurasian plate convergence reduced and accumulation of Neogene siliciclastics in foreland basin started. By 10 Ma, ongoing contraction occurred by underplating of Arabian crustal units beneath the Iranian plate. This process represents 75% of the total shortening. It is not before 5 Ma that the Zagros foreland was incorporated into the southward propagating basement thrust wedge. Folds rejuvenated by 3–2 Ma because of uplift driven by basement shortening and erosion. Since then, folds grew at 0.3—0.6 mm/yr and forced the rivers to flow axially. A total shortening of 65–78 km (16–19%) is estimated across the Zagros. This corresponds to shortening rates of 6.5–8 km/Ma consistent with current geodetic surveys. We point out that although thin-skinned deformation in the sedimentary cover may be important, basement-involved shortening should not be neglected as it requires far less shortening. Moreover, for such foreland folded belts involving basement shortening, underplating may be an efficient process accommodating a significant part of the plate convergence

    Subsidence history of the Middle East Zagros Basin, Permian to Recent

    No full text
    • 

    corecore