79 research outputs found

    Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview

    Get PDF
    In nature, cellulose, lignocellulose and lignin are major sources of plant biomass; therefore, their recycling is indispensable for the carbon cycle. Each polymer is degraded by a variety of microorganisms which produce a battery of enzymes that work synergically. In the near future, processes that use lignocellulolytic enzymes or are based on microorganisms could lead to new, environmentally friendly technologies. This study reviews recent advances in the various biological treatments that can turn these three lignicellulose biopolymers into alternative fuels. In addition, biotechnological innovations based on natural delignification and applied to pulp and paper manufacture are also outlined

    The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    Get PDF
    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.This work has been funded by the Spanish Government (grants CSD2009-00006 and BFU2012-33248, 70% funded by FEDER). This work was also supported by the National Institute of General Medical Science of the National Institutes of Health under award number R01GM095826 to LJS, and by the National Science Foundation under award number MCB0742976 to LJS. JMD and JP received a fellowship from Junta de Andalucía to do some work at University of Georgia

    INSERLAB: una aplicación telemática para determinar la inserción laboral de los egresados andaluces

    Get PDF
    El presente artículo recoge el trabajo de un grupo de profesores de la Universidad de Jaén y Oviedo para desarrollar una aplicación telemática que permita identificar la inserción laboral de los egresados universitarios. Dicho trabajo tiene su origen en un proyecto de investigación obtenido en la convocatoria del 2004 sobre Grupos de Estudios y Análisis en temas de calidad sobre la Enseñanza Universitaria en Andalucía procedente de la UCUA (Unidad para la Calidad de las Universidades Andaluzas)

    CorE from Myxococcus xanthus Is a Copper-Dependent RNA Polymerase Sigma Factor

    Get PDF
    The dual toxicity/essentiality of copper forces cells to maintain a tightly regulated homeostasis for this metal in all living organisms, from bacteria to humans. Consequently, many genes have previously been reported to participate in copper detoxification in bacteria. Myxococcus xanthus, a prokaryote, encodes many proteins involved in copper homeostasis that are differentially regulated by this metal. A σ factor of the ECF (extracytoplasmic function) family, CorE, has been found to regulate the expression of the multicopper oxidase cuoB, the P1B-type ATPases copA and copB, and a gene encoding a protein with a heavy-metal-associated domain. Characterization of CorE has revealed that it requires copper to bind DNA in vitro. Genes regulated by CorE exhibit a characteristic expression profile, with a peak at 2 h after copper addition. Expression rapidly decreases thereafter to basal levels, although the metal is still present in the medium, indicating that the activity of CorE is modulated by a process of activation and inactivation. The use of monovalent and divalent metals to mimic Cu(I) and Cu(II), respectively, and of additives that favor the formation of the two redox states of this metal, has revealed that CorE is activated by Cu(II) and inactivated by Cu(I). The activation/inactivation properties of CorE reside in a Cys-rich domain located at the C terminus of the protein. Point mutations at these residues have allowed the identification of several Cys involved in the activation and inactivation of CorE. Based on these data, along with comparative genomic studies, a new group of ECF σ factors is proposed, which not only clearly differs mechanistically from the other σ factors so far characterized, but also from other metal regulators

    Casos de estudio en México y Latinoamérica

    Get PDF
    Ante la presencia de conflictos sociales y territoriales, las comunidades organizadas buscan estrategias de solución y confrontación. Es el estudio de dichos movimientos, lo que motiva a la publicación de éste libro: Respuestas comunitarias ante conflictos ambientales. Casos de estudio en México y Latinoamérica, reúne catorce textos que analizan las respuestas sociales y documentan la acción colectiva de comunidades que se han organizado para autogestionar soluciones ante conflictos territoriales, económicos y ambientales, en su propio entorno. Las aportaciones de investigadores y activistas, desde enfoques teóricos y metodológicos particulares, exponen casos de estudio sobre organizaciones formales e informales que se han conformado para afrontar los retos que representan proyectos productivos como fábricas cementeras, mineras, puertos, productores de energía, entre otros. Los enfoques analíticos tocan también temas nodales en el estudio de la acción colectiva como la ética, el despojo, los derechos humanos y las estrategias de comunicación y visibilización. Este material, que reúne estudios hechos en distintos lugares de México y Latinoamérica, es un compendio de métodos de investigación y un acercamiento al estudio de los movimientos sociales.UAEMEX, CONACyT, SE

    Bacterial laccases: some recent advances and applications

    Get PDF
    Laccases belong to the large family of multi-copper oxidases (MCOs) that couple the one-electron oxidation of substrates with the four-electron reduction of molecular oxygen to water. Because of their high relative non-specific oxidation capacity particularly on phenols and aromatic amines as well as the lack of requirement for expensive organic cofactors, they have found application in a large number of biotechnological fields. The vast majority of studies and applications were performed using fungal laccases, but bacterial laccases show interesting properties such as optimal temperature above 50 °C, optimal pH at the neutral to alkaline range, thermal and chemical stability and increased salt tolerance. Additionally, bacterial systems benefit from a wide range of molecular biology tools that facilitates their engineering and achievement of high yields of protein production and set-up of cost-effective bioprocesses. In this review we will provide up-to-date information on the distribution and putative physiological role of bacterial laccases and highlight their distinctive structural and biochemical properties, discuss the key role of copper in the biochemical properties, discuss thermostability determinants and, finally, review biotechnological applications with a focus on catalytic mechanisms on phenolics and aromatic amines.info:eu-repo/semantics/publishedVersio

    Risk factors for infections caused by carbapenem-resistant Enterobacterales: an international matched case-control-control study (EURECA)

    Full text link
    Cases were patients with complicated urinary tract infection (cUTI), complicated intraabdominal (cIAI), pneumonia or bacteraemia from other sources (BSI-OS) due to CRE; control groups were patients with infection caused by carbapenem-susceptible Enterobacterales (CSE), and by non-infected patients, respectively. Matching criteria included type of infection for CSE group, ward and duration of hospital admission. Conditional logistic regression was used to identify risk factors. Findings Overall, 235 CRE case patients, 235 CSE controls and 705 non-infected controls were included. The CRE infections were cUTI (133, 56.7%), pneumonia (44, 18.7%), cIAI and BSI-OS (29, 12.3% each). Carbapenemase genes were found in 228 isolates: OXA-48/like, 112 (47.6%), KPC, 84 (35.7%), and metallo-beta-lactamases, 44 (18.7%); 13 produced two. The risk factors for CRE infection in both type of controls were (adjusted OR for CSE controls; 95% CI; p value) previous colonisation/infection by CRE (6.94; 2.74-15.53; <0.001), urinary catheter (1.78; 1.03-3.07; 0.038) and exposure to broad spectrum antibiotics, as categorical (2.20; 1.25-3.88; 0.006) and time-dependent (1.04 per day; 1.00-1.07; 0.014); chronic renal failure (2.81; 1.40-5.64; 0.004) and admission from home (0.44; 0.23-0.85; 0.014) were significant only for CSE controls. Subgroup analyses provided similar results. Interpretation The main risk factors for CRE infections in hospitals with high incidence included previous coloni-zation, urinary catheter and exposure to broad spectrum antibiotics

    Copper and melanin play a role in Myxococcus xanthus predation on Sinorhizobium meliloti

    Get PDF
    Myxococcus xanthus is a soil myxobacterium that exhibits a complex lifecycle with two multicellular stages: cooperative predation and development. During predation, myxobacterial cells produce a wide variety of secondary metabolites and hydrolytic enzymes to kill and consume the prey. It is known that eukaryotic predators, such as ameba and macrophages, introduce copper and other metals into the phagosomes to kill their prey by oxidative stress. However, the role of metals in bacterial predation has not yet been established. In this work, we have addressed the role of copper during predation of M. xanthus on Sinorhizobium meliloti. The use of biosensors, variable pressure scanning electron microscopy, high-resolution scanning transmission electron microscopy, and energy dispersive X ray analysis has revealed that copper accumulates in the region where predator and prey collide. This accumulation of metal up-regulates the expression of several mechanisms involved in copper detoxification in the predator (the P-ATPase CopA, the multicopper oxidase CuoA and the tripartite pump Cus2), and the production by the prey of copper-inducible melanin, which is a polymer with the ability to protect cells from oxidative stress. We have identified two genes in S. meliloti (encoding a tyrosinase and a multicopper oxidase) that participate in the biosynthesis of melanin. Analysis of prey survivability in the co-culture of M. xanthus and a mutant of S. meliloti in which the two genes involved in melanin biosynthesis have been deleted has revealed that this mutant is more sensitive to predation than the wild-type strain. These results indicate that copper plays a role in bacterial predation and that melanin is used by the prey to defend itself from the predator. Taking into consideration that S. meliloti is a nitrogen-fixing bacterium in symbiosis with legumes that coexists in soils with M. xanthus and that copper is a common metal found in this habitat as a consequence of several human activities, these results provide clear evidence that the accumulation of this metal in the soil may influence the microbial ecosystems by affecting bacterial predatory activities.This work has been supported by the Spanish Government grant BFU2016−75425−P to AM-M (70% funded by FEDER). FC-M and NG-T were granted with contracts (Ref. 6010 and 2811, respectively) from Programa Empleo Juvenil-Fondo Social Europeo from Junta de Andalucía

    Mechanisms of action of non-canonical ECF sigma factors

    No full text
    Extracytoplasmic function (ECF) sigma factors are subunits of the RNA polymerase specialized in activating the transcription of a subset of genes responding to a specific environmental condition. The signal-transduction pathways where they participate can be activated by diverse mechanisms. The most common mechanism involves the action of a membrane-bound anti-sigma factor, which sequesters the ECF sigma factor, and releases it after the stimulus is sensed. However, despite most of these systems following this canonical regulation, there are many ECF sigma factors exhibiting a non-canonical regulatory mechanism. In this review, we aim to provide an updated and comprehensive view of the different activation mechanisms known for non-canonical ECF sigma factors, detailing their inclusion to the different phylogenetic groups and describing the mechanisms of regulation of some of their representative members such as EcfG from Rhodobacter sphaeroides, showing a partner-switch mechanism; EcfP from Vibrio parahaemolyticus, with a phosphorylation-dependent mechanism; or CorE from Myxococcus xanthus, regulated by a metal-sensing C-terminal extension.This research was funded by the Spanish Government (PID2020-112634GB-I00) and FEDER funds (grant A-BIO-126-UGR20)
    corecore