738 research outputs found

    Venus: The case for a wet origin and a runaway greenhouse

    Get PDF
    To one interested in atmospheric evolution, the most intriguing aspect of our neighboring planet Venus is its lack of water. Measurements made by Pioneer Venus and by Several Venera spacecraft indicate that the present water abundance in Venus' lower atmosphere is of the order of 20 to 200 ppmv, or 3 x 10( exp -6) to 3 x 10 (exp -5) of the amount of water in Earth's oceans. The exact depletion factor is uncertain, in part because of an unexplained vertical gradient in H2O concentration in the lowest 10 km of the venusian atmosphere, but the general scarcity of water is well established. The interesting question, then, is: Was venus deficient in water when it formed and, if not, where did its water go? The conclusion that Venus was originally wet is consistent with its large endowment of other volatiles and with the enhanced D/H ratio in the present atmosphere. The most likely mechanism by which Venus could have lost its water is by the development of a runaway or moist greenhouse atmosphere followed by photodissociation of water vapor and escape of hydrogen to space. Climate model calculations that neglect cloud albedo feedback predict the existence of two critical transitions in atmospheric behavior at high solar fluxes: (1) at a solar flux of approximately 1.1 times the value at Earth's orbit, S(o), the abundance of stratospheric water vapor increases dramatically, permitting rapid escape of hydrogen to space (termed a moist greenhouse) and (2) at a solar flux of approximately 1.4 S(o), the oceans vaporize entirely, creating a true runaway greenhouse. If cloudiness increases at high surface temperatures, as seems likely, and if the dominant effect of clouds is to cool the planet by reflecting incident solar radiation, the actual solar flux required to create moist or runaway conditions would be higher than the values quoted above. Early in solar system history, solar luminosity was about 25 percent to 30 percent less than today, putting the flux at Venus' orbit in the range of 1.34 S(o) to 1.43 S(o). Thus, it is possible that Venus had liquid water on its surface for several hundred million years following its formation. Paradoxically, this might have facilitated water loss by sequestering atmospheric CO2 in carbonate rocks and by providing an effective medium for surface oxidation

    Evolution of the atmosphere

    Get PDF
    Theories on the origin of the Earth atmosphere and chemical composition are presented. The role of oxygenic photosynthesis on the determination of the Earth's origin is discussed. The research suggests that further analysis of the geologic record is needed to more accurately estimate the history of atmospheric oxygen

    Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres

    Full text link
    Previous research has indicated that high amounts of ozone (O3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars.We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. The O3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. We conclude that with a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.Comment: 27 pages, 15 figures, Astronomy & Astrophysics accepte

    Partitioning of carbon dioxide between the atmosphere and lithosphere on early Mars

    Get PDF
    It is pointed out that in addition to the 1 to 5 bar CO2 total inventory, a high level of global volcanism was needed to keep the CO2 from being drawn away permanently by weathering of igneous rocks; the volcanism would continually decompose the carbonate resulting in steady efficient recycling

    Impact production of NO and reduced species

    Get PDF
    It has recently been suggested that a reported spike in seawater (87)Sr/(86)Sr at the K-T boundary is the signature of an impact-generated acid deluge. However, the amount of acid required is implausibly large. Some about 3 x 10 to the 15th power moles of Sr must be weathered from silicates to produce the inferred Sr spike. The amount of acid required is at least 100 and probably 1000 times greater. Production of 3 x 10 to the 18th power moles of NO is clearly untenable. The atmosphere presently contains only 1.4 x 10 to the 20th power moles of N-sub 2 and 3.8 x 10 to the 19th power moles of O sub 2 If the entire atmosphere were shocked to 2000 K and cooled within a second, the total NO produced would be about 3 x 10 to the 18th power moles. This is obviously unrealistic. A (still to short) cooling time of 10th to the 3rd power sec reduces NO production by an order of magnitude. In passing, we note that if the entire atmosphere had in fact been shocked to 2000 K, acid rain would have been the least of a dinosaur's problems. Acid rain as a mechanism poses poses other difficulties. Recently deposited carbonates would have been most susceptable to acid attack. The researchers' preferred explanation is simply increased continental erosion following ecological trauma, coupled with enchanced levels of CO-sub 2

    Warming the early Earth - CO2 reconsidered

    Full text link
    Despite a fainter Sun, the surface of the early Earth was mostly ice-free. Proposed solutions to this so-called "faint young Sun problem" have usually involved higher amounts of greenhouse gases than present in the modern-day atmosphere. However, geological evidence seemed to indicate that the atmospheric CO2 concentrations during the Archaean and Proterozoic were far too low to keep the surface from freezing. With a radiative-convective model including new, updated thermal absorption coefficients, we found that the amount of CO2 necessary to obtain 273 K at the surface is reduced up to an order of magnitude compared to previous studies. For the late Archaean and early Proterozoic period of the Earth, we calculate that CO2 partial pressures of only about 2.9 mb are required to keep its surface from freezing which is compatible with the amount inferred from sediment studies. This conclusion was not significantly changed when we varied model parameters such as relative humidity or surface albedo, obtaining CO2 partial pressures for the late Archaean between 1.5 and 5.5 mb. Thus, the contradiction between sediment data and model results disappears for the late Archaean and early Proterozoic.Comment: 53 pages, 4 tables, 11 figures, published in Planetary and Space Scienc

    Abiotic O2_{2} Levels on Planets around F, G, K, and M Stars: Possible False Positives for Life?

    Full text link
    In the search for life on Earth-like planets around other stars, the first (and likely only) information will come from the spectroscopic characterization of the planet's atmosphere. Of the countless number of chemical species terrestrial life produces, only a few have the distinct spectral features and the necessary atmospheric abundance to be detectable. The easiest of these species to observe in Earth's atmosphere is O2_{2} (and its photochemical byproduct, O3_{3}). But O2_{2} can also be produced abiotically by photolysis of CO2_{2}, followed by recombination of O atoms with each other. CO is produced in stoichiometric proportions. Whether O2_{2} and CO can accumulate to appreciable concentrations depends on the ratio of far-UV to near-UV radiation coming from the planet's parent star and on what happens to these gases when they dissolve in a planet's oceans. Using a one-dimensional photochemical model, we demonstrate that O2_{2} derived from CO2_{2} photolysis should not accumulate to measurable concentrations on planets around F- and G-type stars. K-star, and especially M-star planets, however, may build up O2_{2} because of the low near-UV flux from their parent stars, in agreement with some previous studies. On such planets, a 'false positive' for life is possible if recombination of dissolved CO and O2_{2} in the oceans is slow and if other O2_{2} sinks (e.g., reduced volcanic gases or dissolved ferrous iron) are small. O3_{3}, on the other hand, could be detectable at UV wavelengths (λ\lambda < 300 nm) for a much broader range of boundary conditions and stellar types.Comment: 20 pages text, 9 figure

    Habitable planets around the star Gl 581?

    Get PDF
    Radial velocity surveys are now able to detect terrestrial planets at habitable distance from M-type stars. Recently, two planets with minimum masses below 10 Earth masses were reported in a triple system around the M-type star Gliese 581. Using results from atmospheric models and constraints from the evolution of Venus and Mars, we assess the habitability of planets Gl 581c and Gl 581d and we discuss the uncertainties affecting the habitable zone (HZ) boundaries determination. We provide simplified formulae to estimate the HZ limits that may be used to evaluate the astrobiological potential of terrestrial exoplanets that will hopefully be discovered in the near future. Planets Gl 581c and 'd' are near, but outside, what can be considered as the conservative HZ. Planet 'c' receives 30% more energy from its star than Venus from the Sun, with an increased radiative forcing caused by the spectral energy distribution of Gl 581. Its habitability cannot however be positively ruled out by theoretical models due to uncertainties affecting cloud properties. Irradiation conditions of planet 'd' are comparable with those of early Mars. Thanks to the warming effect of CO2-ice clouds planet 'd' might be a better candidate for the first exoplanet known to be potentially habitable. A mixture of various greenhouse gases could also maintain habitable conditions on this planet.Comment: Astronomy and Astrophysics (2007) accepted for publicatio

    The case for a wet, warm climate on early Mars

    Get PDF
    Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism

    Possible solutions to the problem of channel formation on early Mars

    Get PDF
    A warm climate on early Mars would provide a natural, although not unique, explanation for the presence of fluvial networks on the ancient, heavily cratered terrains. Explaining how the climate could have been kept warm, however, is not easy. The idea that the global average surface temperature, T(sub s), could have been kept warm by a dense, CO2 atmosphere supplied by volcanism or impacts is no longer viable. It was shown that CO2 cloud formation should have kept T(sub s) well below freezing until approximately 2 b.y. ago, when the Sun had brightened to at least 86 percent of its present value. Warm equatorial regions on an otherwise cold planet seem unlikely because atmospheric CO2 would probably condense out at the poles. Warming by impact-produced dust in the atmosphere seems unlikely because the amount of warming expected for silicate dust particles is relatively small. Greenhouse warming by high altitude CO2 ice clouds seems unlikely because such are poor absorbers of infrared radiation at most wavelengths. Warming by atmospheric NH3 seems unlikely because NH3 is readily photodissociated and because N may have been in short supply as consequence of impact erosion and the high solubility of NH3. A brighter, mass-losing young Sun seems unlikely because stellar winds of the required strength were not observed on other solar-type stars. In short, most of the explanations for a warm Martian paleoclimate that were proposed in the past seem unlikely. One possibility that seems feasible from radiative/photochemical standpoint is that CH4 and associated hydrocarbon gases and particles contributed substantially to the greenhouse effect on early Mars. Methane is photochemically more stable than NH3 and the gases and particles that can be formed from it are all good absorbers of infrared radiation. The idea of a CH4-rich Martian paleoatmosphere was suggested a long time ago but has fallen out of favor because of perceived difficulties in maintaining a CH4-rich atmosphere. In particular, it is not obvious where the CH4 might come from, since volcanic gases (on Earth, at least) contain very little CH4. This difficulty could be largely overcome if early Mars was inhabited by microorganisms. Then, methanogenic bacteria living in sediments could presumably have supplied CH4 to the atmosphere in copious quantities
    • …
    corecore