1,534 research outputs found

    Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer)

    Full text link
    The escape trajectories animals take following a predatory attack appear to show high degrees of apparent 'randomness' - a property that has been described as 'protean behaviour'. Here we present a method of quantifying the escape trajectories of individual animals using a path complexity approach. When fish (Pseudomugil signifer) were attacked either on their own or in groups, we find that an individual's path rapidly increases in entropy (our measure of complexity) following the attack. For individuals on their own, this entropy remains elevated (indicating a more random path) for a sustained period (10 seconds) after the attack, whilst it falls more quickly for individuals in groups. The entropy of the path is context dependent. When attacks towards single fish come from greater distances, a fish's path shows less complexity compared to attacks that come from short range. This context dependency effect did not exist, however, when individuals were in groups. Nor did the path complexity of individuals in groups depend on a fish's local density of neighbours. We separate out the components of speed and direction changes to determine which of these components contributes to the overall increase in path complexity following an attack. We found that both speed and direction measures contribute similarly to an individual's path's complexity in absolute terms. Our work highlights the adaptive behavioural tactics that animals use to avoid predators and also provides a novel method for quantifying the escape trajectories of animals.Comment: 9 page

    Collective decision-making appears more egalitarian in populations where group fission costs are higher

    Get PDF
    Collective decision-making is predicted to be more egalitarian in conditions where the costs of group fission are higher. Here, we ask whether Trinidadian guppies (Poecilia reticulata) living in high or low predation environments, and thereby facing differential group fission costs, make collective decisions in line with this prediction. Using a classic decision-making scenario, we found that fish from high predation environments switched their positions within groups more frequently than fish from low predation environments. Because the relative positions individuals adopt in moving groups can influence their contribution towards group decisions, increased positional switching appears to support the prediction of more evenly distributed decision-making in populations where group fission costs are higher. In an agent-based model, we further identified that more frequent, asynchronous updating of individuals' positions could explain increased positional switching, as was observed in fish from high predation environments. Our results are consistent with theoretical predictions about the structure of collective decision-making and the adaptability of social decision-rules in the face of different environmental contexts

    Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions

    Get PDF
    Detailed quantifications of how predators and their grouping prey interact in three dimensions (3D) remain rare. Here we record the structure and dynamics of fish shoals (Pseudomugil signifer) in 3D both with and without live predators (Philypnodon grandiceps) under controlled laboratory conditions. Shoals adopted two distinct types of shoal structure; 'sphere-like' geometries at depth, and flat 'carpet-like' structures at the water's surface, with shoals becoming more compact in both horizontal and vertical planes in the presence of a predator. The predators actively stalked and at- tacked the prey, with attacks being initiated when the shoals were not in their usual configurations. These attacks caused the shoals to break apart, but shoal reformation was rapid, and involved individuals adjusting their positions in both horizontal and vertical dimensions. Our analyses revealed that targeted prey were more isolated from other conspecifics, and were closer in terms of distance and direction to the predator compared to non-targeted prey. Moreover, which prey were targeted could largely be identified based on individuals' positions from a single plane. This highlights that previously proposed 2D theoretical models and their assumptions appear valid when considering how predators target groups in 3D. Our work provides experimental, and not just anecdotal, sup- port for classic theoretical predictions, and also lends new insights into predatory-prey interactions in three-dimensional environments

    A model comparison reveals dynamic social information drives the movements of humbug damselfish (Dascyllus aruanus)

    Get PDF
    Animals make use a range of social information to inform their movement decisions. One common movement rule, found across many different species, is that the probability that an individual moves to an area increases with the number of conspecifics there. However, in many cases, it remains unclear what social cues produce this and other similar movement rules. Here, we investigate what cues are used by damselfish (Dascyllus aruanus) when repeatedly crossing back and forth between two coral patches in an experimental arena. We find that an individual's decision to move is best predicted by the recent movements of conspecifics either to or from that individual's current habitat. Rather than actively seeking attachment to a larger group, individuals are instead prioritizing highly local and dynamic information with very limited spatial and temporal ranges. By reanalyzing data in which the same species crossed for the first time to a new coral patch, we show that the individuals use static cues in this case. This suggests that these fish alter their information usage according to the structure and familiarity of their environment by using stable information when moving to a novel area and localized dynamic information when moving between familiar areas

    Not So Fast: Swimming Behavior of Sailfish during Predator–Prey Interactions using High-Speed Video and Accelerometry

    Get PDF
    Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey

    Local interactions and global properties of wild, free-ranging stickleback shoals

    Get PDF
    Funding: Australian Research Council. A.J.W.W. and T.M.S. were supported by a Discovery Project Grant from the Australian Research Council. D.J.T.S. and J.E.H.-R. were supported by a Knut & Alice Wallenberg Foundation Grant.Collective motion describes the global properties of moving groups of animals and the self-organized, coordinated patterns of individual behaviour that produce them. We examined the group-level patterns and local interactions between individuals in wild, free-ranging shoals of three-spine sticklebacks, Gasterosteus aculeatus. Our data reveal that the highest frequencies of near-neighbour encounters occur at between one and two body lengths from a focal fish, with the peak frequency alongside a focal individual. Fish also show the highest alignment with these laterally placed individuals, and generally with animals in front of themselves. Furthermore, fish are more closely matched in size, speed and orientation to their near neighbours than to more distant neighbours, indicating local organization within groups. Among the group level properties reported here, we find that polarization is strongly influenced by group speed, but also the variation in speed among individuals and the nearest neighbour distances of group members. While we find no relationship between group order and group size, we do find that larger groups tend to have lower nearest neighbour distances, which in turn may be important in maintaining group order.Publisher PDFPeer reviewe

    Automating crystallographic structure solution and refinement of protein-ligand complexes.

    Get PDF
    High-throughput drug-discovery and mechanistic studies often require the determination of multiple related crystal structures that only differ in the bound ligands, point mutations in the protein sequence and minor conformational changes. If performed manually, solution and refinement requires extensive repetition of the same tasks for each structure. To accelerate this process and minimize manual effort, a pipeline encompassing all stages of ligand building and refinement, starting from integrated and scaled diffraction intensities, has been implemented in Phenix. The resulting system is able to successfully solve and refine large collections of structures in parallel without extensive user intervention prior to the final stages of model completion and validation

    Body size affects the strength of social interactions and spatial organization of a schooling fish (Pseudomugil signifer)

    Get PDF
    While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here, we analyse the statistical properties of schooling fish (Pseudomugil signifer) through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish

    On the duality between interaction responses and mutual positions in flocking and schooling.

    Get PDF
    Recent research in animal behaviour has contributed to determine how alignment, turning responses, and changes of speed mediate flocking and schooling interactions in different animal species. Here, we propose a complementary approach to the analysis of flocking phenomena, based on the idea that animals occupy preferential, anysotropic positions with respect to their neighbours, and devote a large amount of their interaction responses to maintaining their mutual positions. We test our approach by deriving the apparent alignment and attraction responses from simulated trajectories of animals moving side by side, or one in front of the other. We show that the anisotropic positioning of individuals, in combination with noise, is sufficient to reproduce several aspects of the movement responses observed in real animal groups. This anisotropy at the level of interactions should be considered explicitly in future models of flocking and schooling. By making a distinction between interaction responses involved in maintaining a preferred flock configuration, and interaction responses directed at changing it, our work provides a frame to discriminate movement interactions that signal directional conflict from interactions underlying consensual group motion
    • …
    corecore