117 research outputs found

    Tagging genes with cassette-exchange sites

    Get PDF
    In an effort to make transgenesis more flexible and reproducible, we developed a system based on novel 5â€Č and 3â€Č ‘gene trap’ vectors containing heterospecific Flp recognition target sites and the corresponding ‘exchange’ vectors allowing the insertion of any DNA sequence of interest into the trapped locus. Flp-recombinase-mediated cassette exchange was demonstrated to be highly efficient in our system, even in the absence of locus-specific selection. The feasibility of constructing a library of ES cell clones using our gene trap vectors was tested and a thousand insertion sites were characterized, following electroporation in ES cells, by RACE–PCR and sequencing. We validated the system in vivo for two trapped loci in transgenic mice and demonstrated that the reporter transgenes inserted into the trapped loci have an expression pattern identical to the endogenous genes. We believe that this system will facilitate in vivo studies of gene function and large-scale generation of mouse models of human diseases, caused by not only loss but also gain of function alleles

    Anatomical and Functional Effects of Oral Administration of Curcuma Longa and Boswellia Serrata Combination in Patients with Treatment-NaĂŻve Diabetic Macular Edema

    Get PDF
    Anti-vascular endothelial growth factor nowdays represents the standard of care for diabetic macular edema (DME). Nevertheless, the burden of injections worldwide has created tremendous stress on the healthcare system during the COVID-19 pandemic. The aim of this study was to investigate the effects of the oral administration of Curcuma longa and Boswellia serrata (Retimix(Âź)) in patients with non-proliferative diabetic retinopathy (DR) and treatment-naĂŻve DME < 400 ÎŒm, managed during the COVID-19 pandemic. In this retrospective study, patients were enrolled and divided into two groups, one undergoing observation (Group A, n 12) and one receiving one sachet a day of Retimix(Âź) (Group B, n 49). Best-corrected visual acuity (BCVA) and central macular thickness (CMT) measured by spectral-domain optical coherence tomography were performed at baseline, then at one and six months. A mixed-design ANOVA was calculated to determine whether the change in CMT and BCVA over time differed according to the consumption of Retimix(Âź). The interaction between time and treatment was significant, with F (1.032, 102.168) = 14.416; η(2) = 0.127; p < 0.001, indicating that the change in terms of CMT and BCVA over time among groups was significantly different. In conclusion, our results show the efficacy of Curcuma longa and Boswellia serrata in patients with non-proliferative DR and treatment-naĂŻve DME in maintaining baseline CMT and BCVA values over time

    The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product

    Get PDF
    Since 2016, the Copernicus Marine Environment Monitoring Service (CMEMS) has produced and disseminated an ensemble of four global ocean reanalyses produced at eddy-permitting resolution for the period from 1993 to present, called GREP (Global ocean Reanalysis Ensemble Product). This dataset offers the possibility to investigate the potential benefits of a multi-system approach for ocean reanalyses, since the four reanalyses span by construction the same spatial and temporal scales. In particular, our investigations focus on the added value of the information on the ensemble spread, implicitly contained in the GREP ensemble, for temperature, salinity, and steric sea level studies. It is shown that in spite of the small ensemble size, the spread is capable of estimating the flow-dependent uncertainty in the ensemble mean, although proper re-scaling is needed to achieve reliability. The GREP members also exhibit larger consistency (smaller spread) than their predecessors, suggesting advancement with time of the reanalysis vintage. The uncertainty information is crucial for monitoring the climate of the ocean, even at regional level, as GREP shows consistency with CMEMS high-resolution regional products and complement the regional estimates with uncertainty estimates. Further applications of the spread include the monitoring of the impact of changes in ocean observing networks; the use of multi-model ensemble anomalies in hybrid ensemble-variational retrospective analysis systems, which outperform static covariances and represent a promising application of GREP. Overall, the spread information of the GREP product is found to significantly contribute to the crucial requirement of uncertainty estimates for climatic datasets.Data from the reanalyses presented in this work are available from the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/). Part of this work was supported by the EOS COST Action (“Evaluation of Ocean Synthesis”, http://eos-cost.eu/) through its Short Term Scientific Missions program. The full C-GLORS dataset is available at http://c-glors.cmcc.it. This work has received funding from the Copernicus Marine Environment Monitoring Service (CMEMS).Published287-3124A. Oceanografia e climaJCR Journa

    The zCOSMOS 10k-Bright Spectroscopic Sample

    Get PDF
    We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed

    Observational needs for improving ocean and coupled reanalysis, S2S prediction, and decadal prediction

    Get PDF
    Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. New observation types lead to new DA methods and new DA methods, such as coupled DA, can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of observations that are already available, for example, taking advantage of strongly coupled DA so that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate as well as the initialization of operational long-range prediction models. There are many remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean-observing system throughout its history, the presence of biases and drifts in models, and the simplifying assumptions made in DA solution methods. From a governance point of view, more support is needed to bring the ocean-observing and DA communities together. For prediction applications, there is wide agreement that protocols are needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) timescales. There is potential for new observation types to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering hours to weeks, out to multiple decades. Better communication between DA and observation communities is encouraged in order to allow operational prediction centers the ability to provide guidance for the design of a sustained and adaptive observing network

    The VIMOS Public Extragalactic Redshift Survey (VIPERS) : The decline of cosmic star formation: quenching, mass, and environment connections

    Get PDF
    RT acknowledges financial support from the European Research Council through grant n. 202686.We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of the environment on the evolution of galaxies between z = 0.5 and z = 0.9. We characterise local environment in terms of the density contrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the fifth nearest neighbour. This is performed by using a volume-limited sub-sample of galaxies complete up to z = 0.9, but allows us to attach a value of local density to all galaxies in the full VIPERS magnitude-limited sample to i < 22.5. We use this information to estimate how the distribution of galaxy stellar masses depends on environment. More massive galaxies tend to reside in higher-density environments over the full redshift range explored. Defining star-forming and passive galaxies through their (NUV-r) vs. (r-K) colours, we then quantify the fraction of star-forming over passive galaxies, fap, as a function of environment at fixed stellar mass. fap is higher in low-density regions for galaxies with masses ranging from log (M/M⊙) = 10.38 (the lowest value explored) to at least log (M/M⊙) ~ 11.3, although with decreasing significance going from lower to higher masses. This is the first time that environmental effects on high-mass galaxies are clearly detected at redshifts as high as z ~ 0.9. We compared these results to VIPERS-like galaxy mock catalogues based on a widely used galaxy formation model. The model correctly reproduces fap in low-density environments, but underpredicts it at high densities. The discrepancy is particularly strong for the lowest-mass bins. We find that this discrepancy is driven by an excess of low-mass passive satellite galaxies in the model. In high-density regions, we obtain a better (although not perfect) agreement of the model fap with observations by studying the accretion history of these model galaxies (that is, the times when they become satellites), by assuming either that a non-negligible fraction of satellites is destroyed, or that their quenching timescale is longer than ~ 2 Gyr.PostprintPeer reviewe

    The VIMOS Public Extragalactic Redshift Survey (VIPERS). Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years

    Get PDF
    R.T. acknowledges financial support from the European Research Councilthrough grant No. 202686.We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z ~ 1. We trace the extents and evolutions of both the blue cloud and red sequence by fitting double Gaussians to the d4000 distribution of galaxies in narrow stellar mass bins, for four redshift intervals over 0 < z < 1. This reveals downsizing in star formation, since the high-mass limit of the blue cloud has retreated steadily from time from ℳ ~ 1011.2 M⊙ at z ~ 0.9 to ℳ ~ 1010.7 M⊙ to the present day. The number density of massive blue-cloud galaxies (ℳ ~ 1011 M⊙, d4000 < 1.55) drops sharply by a factor five between z ~ 0.8 and z ~ 0.5. These galaxies are becoming quiescent at a rate that largely matches  the increase in the numbers of massive passive galaxies seen over this period. We examine the size-mass relation of blue-cloud galaxies,  finding that its high-mass boundary runs along lines of constant ℳ /re or equivalently inferred velocity dispersion. Larger galaxies can continue to form stars to higher stellar masses than smaller galaxies. As  blue-cloud galaxies approach this high-mass limit, entering a narrow diagonal region within the size-mass plane termed the “quenching zone”, they start to be quenched, their d4000 values increasing to push them towards the green valley. In parallel, their structures change, showing higher SĂ©rsic indices and central stellar mass densities. For these galaxies, bulge growth is required for them to reach the high-mass limit of the blue cloud and be quenched by internal mechanisms. The blue-cloud galaxies that are being quenched at z ~ 0.8 lie along the same size-mass relation as present day quiescent galaxies and seem the likely progenitors of today’s S0s.Publisher PDFPeer reviewe
    • 

    corecore