436 research outputs found

    Plasma physics and control studies planned in JT-60SA for ITER and DEMO operations and risk mitigation

    Get PDF
    | openaire: EC/H2020/633053/EU//EUROfusionA large superconducting machine, JT-60SA has been constructed to provide major contributions to the ITER program and DEMO design. For the success of the ITER project and fusion reactor, understanding and development of plasma controllability in ITER and DEMO relevant higher beta regimes are essential. JT-60SA has focused the program on the plasma controllability for scenario development and risk mitigation in ITER as well as on investigating DEMO relevant regimes. This paper summarizes the high research priorities and strategy for the JT-60SA project. Recent works on simulation studies to prepare the plasma physics and control experiments are presented, such as plasma breakdown and equilibrium controls, hybrid and steady-state scenario development, and risk mitigation techniques. Contributions of JT-60SA to ITER and DEMO have been clarified through those studies.Peer reviewe

    The broad-lined Type-Ic supernova SN 2022xxf with extraordinary two-humped light curves

    Full text link
    We report on our study of supernova (SN) 2022xxf based on observations obtained during the first four months of its evolution. The light curves (LCs) display two humps of similar maximum brightness separated by 75 days, unprecedented for a broad-lined (BL) Type Ic supernova (SN IcBL). SN 2022xxf is the most nearby SN IcBL to date (in NGC 3705, z=0.0037z = 0.0037, at a distance of about 20 Mpc). Optical and near-infrared photometry and spectroscopy are used to identify the energy source powering the LC. Nearly 50 epochs of high signal-to-noise-ratio spectroscopy were obtained within 130 days, comprising an unparalleled dataset for a SN IcBL, and one of the best-sampled SN datasets to date. The global spectral appearance and evolution of SN 2022xxf points to typical SN Ic/IcBL, with broad features (up to 14000\sim14000 km s1^{-1}) and a gradual transition from the photospheric to the nebular phase. However, narrow emission lines (corresponding to 10002500\sim1000-2500 km s1^{-1}) are present in the spectra from the time of the second rise, suggesting slower-moving circumstellar material (CSM). These lines are subtle, in comparison to the typical strong narrow lines of CSM-interacting SNe, for example, Type IIn, Ibn, and Icn, but some are readily noticeable at late times such as in Mg I λ\lambda5170 and [O I] λ\lambda5577. Unusually, the near-infrared spectra show narrow line peaks in a number of features formed by ions of O and Mg. We infer the presence of CSM that is free of H and He. We propose that the radiative energy from the ejecta-CSM interaction is a plausible explanation for the second LC hump. This interaction scenario is supported by the color evolution, which progresses to the blue as the light curve evolves along the second hump, and the slow second rise and subsequent rapid LC drop. (Abstract abridged)Comment: Accepted versio

    X-Ray Polarization of BL Lacertae in Outburst

    Get PDF
    We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/γ-ray outburst, a 287 ks observation (2022 November 27-30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3-10 keV), NuSTAR in hard X-rays (3-70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 - 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2-4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    MAGIC detection of GRB 201216C at z = 1.1

    Get PDF
    Gamma-ray bursts (GRBs) are explosive transient events occurring at cosmological distances, releasing a large amount of energy as electromagnetic radiation over several energy bands. We report the detection of the long GRB 201216C by the MAGIC telescopes. The source is located at z = 1.1 and thus it is the farthest one detected at very high energies. The emission above 70 GeV of GRB 201216C is modelled together with multiwavelength data within a synchrotron and synchrotron self-Compton (SSC) scenario. We find that SSC can explain the broad-band data well from the optical to the very-high-energy band. For the late-time radio data, a different component is needed to account for the observed emission. Differently from previous GRBs detected in the very-high-energy range, the model for GRB 201216C strongly favours a wind-like medium. The model parameters have values similar to those found in past studies of the afterglows of GRBs detected up to GeV energies

    The variability patterns of the TeV blazar PG 1553+113 from a decade of MAGIC and multi-band observations

    Full text link
    PG 1553+113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band. The source is also a very high-energy (VHE; >100 GeV) gamma-ray emitter. To better understand its properties and identify the underlying physical processes driving its variability, the MAGIC Collaboration initiated a multiyear, multiwavelength monitoring campaign in 2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The analysis presented in this paper uses data until 2017 and focuses on the characterization of the variability. The gamma-ray data show a (hint of a) periodic signal compatible with literature, but the X-ray and VHE gamma-ray data do not show statistical evidence for a periodic signal. In other bands, the data are compatible with the gamma-ray period, but with a relatively high p-value. The complex connection between the low and high-energy emission and the non-monochromatic modulation and changes in flux suggests that a simple one-zone model is unable to explain all the variability. Instead, a model including a periodic component along with multiple emission zones is required.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 19 pages, 9 figures. Corresponding authors: Elisa Prandini, Antonio Stamerra, Talvikki Hovatt

    Multiwavelength study of the galactic PeVatron candidate LHAASO J2108+5157

    Get PDF
    Context. Several new ultrahigh-energy (UHE) γ-ray sources have recently been discovered by the Large High Altitude Air Shower Observatory (LHAASO) collaboration. These represent a step forward in the search for the so-called Galactic PeVatrons, the enigmatic sources of the Galactic cosmic rays up to PeV energies. However, it has been shown that multi-TeV γ-ray emission does not necessarily prove the existence of a hadronic accelerator in the source; indeed this emission could also be explained as inverse Compton scattering from electrons in a radiation-dominated environment. A clear distinction between the two major emission mechanisms would only be made possible by taking into account multi-wavelength data and detailed morphology of the source. Aims. We aim to understand the nature of the unidentified source LHAASO J2108+5157, which is one of the few known UHE sources with no very high-energy (VHE) counterpart. Methods. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good-quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its high-energy (HE) counterpart 4FGL J2108.0+5155. We used naima and jetset software packages to examine the leptonic and hadronic scenario of the multi-wavelength emission of the source. Results. We found an excess (3.7σ) in the LST-1 data at energies E > 3 TeV. Further analysis of the whole LST-1 energy range, assuming a point-like source, resulted in a hint (2.2σ) of hard emission, which can be described with a single power law with a photon index of Σ = 1.6 ± 0.2 the range of 0.3 - 100 TeV. We did not find any significant extended emission that could be related to a supernova remnant (SNR) or pulsar wind nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. We revealed a new potential hard source in Fermi-LAT data with a significance of 4σ and a photon index of Σ = 1.9 ± 0.2, which is not spatially correlated with LHAASO J2108+5157, but including it in the source model we were able to improve spectral representation of the HE counterpart 4FGL J2108.0+5155. Conclusions. The LST-1 and LHAASO observations can be explained as inverse Compton-dominated leptonic emission of relativistic electrons with a cutoff energy of 100-30+70 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a PWN or a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a Geminga-like pulsar, which would be able to power the VHE-UHE emission. Nevertheless, the lack of a pulsar in the neighborhood of the UHE source is a challenge to the PWN/TeV-halo scenario. The UHE γ rays can also be explained as π0 decay-dominated hadronic emission due to interaction of relativistic protons with one of the two known molecular clouds in the direction of the source. Indeed, the hard spectrum in the LST-1 band is compatible with protons escaping a shock around a middle-aged SNR because of their high low-energy cut-off, but the origin of the HE γ-ray emission remains an open question

    Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity

    Get PDF
    We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) 3-rays. A significant correlation (>3σ) between X-rays and VHE 3-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy 3-rays and radio, with the radio lagging by more than 100 days, placing the 3-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE 3-rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock. © 2023. The Author(s). Published by the American Astronomical Society
    corecore