161 research outputs found

    Light-regulated plant growth and development.

    Get PDF
    Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering)

    Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers.

    Get PDF
    In shade-intolerant plants such as Arabidopsis, a reduction in the red/far-red (R/FR) ratio, indicative of competition from other plants, triggers a suite of responses known as the shade avoidance syndrome (SAS). The phytochrome photoreceptors measure the R/FR ratio and control the SAS. The phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) are stabilized in the shade and are required for a full SAS, whereas the related bHLH factor HFR1 (long hypocotyl in FR light) is transcriptionally induced by shade and inhibits this response. Here we show that HFR1 interacts with PIF4 and PIF5 and limits their capacity to induce the expression of shade marker genes and to promote elongation growth. HFR1 directly inhibits these PIFs by forming non-DNA-binding heterodimers with PIF4 and PIF5. Our data indicate that PIF4 and PIF5 promote SAS by directly binding to G-boxes present in the promoter of shade marker genes, but their action is limited later in the shade when HFR1 accumulates and forms non-DNA-binding heterodimers. This negative feedback loop is important to limit the response of plants to shade

    Deicing Impacts on the Danforth Campus, Fall 2020

    Get PDF
    De-Icing Impacts on the Danforth Campus, Sustainability Exchange, Washington University in St. Louis, Fall 2020

    Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light.

    Get PDF
    Plants in dense vegetation perceive their neighbors primarily through changes in light quality. Initially, the ratio between red (R) and far-red (FR) light decreases due to reflection of FR by plant tissue well before shading occurs. Perception of low R:FR by the phytochrome photoreceptors induces the shade avoidance response [1], of which accelerated elongation growth of leaf-bearing organs is an important feature. Low R:FR-induced phytochrome inactivation leads to the accumulation and activation of the transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs) 4, 5, and 7 and subsequent expression of their growth-mediating targets [2, 3]. When true shading occurs, transmitted light is especially depleted in red and blue (B) wavelengths, due to absorption by chlorophyll [4]. Although the reduction of blue wavelengths alone does not occur in nature, long-term exposure to low B light induces a shade avoidance-like response that is dependent on the cryptochrome photoreceptors and the transcription factors PIF4 and PIF5 [5-7]. We show in Arabidopsis thaliana that low B in combination with low R:FR enhances petiole elongation similar to vegetation shade, providing functional context for a low B response in plant competition. Low B potentiates the low R:FR response through PIF4, PIF5, and PIF7, and it involves increased PIF5 abundance and transcriptional changes. Low B attenuates a low R:FR-induced negative feedback loop through reduced gene expression of negative regulators and reduced HFR1 levels. The enhanced response to combined phytochrome and cryptochrome inactivation shows how multiple light cues can be integrated to fine-tune the plant's response to a changing environment

    Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.

    Get PDF
    Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    Auxin-mediated plant architectural changes in response to shade and high temperature.

    Get PDF
    The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature

    Photoreceptors UVR8 and phytochrome B cooperate to optimize plant growth and defense in patchy canopies

    Get PDF
    Light is a critical source of information for plants. Plants use the phytochromes (particularly phyB) to detect light signals associated with the proximity of competitors. A low ratio of red (R) to far-red (FR) radiation (R:FR) indicates increased competition intensity, and triggers morphological responses that allow the plant to escape shading from its neighbors (the shade avoidance syndrome, SAS). Recent evidence from studies on light regulation of plant immunity has suggested that plants may also use ultraviolet-B (UV-B, 290-315 nm) radiation as an indicator of competition intensity and light availability. In addition, recent studies have shown that UV-B radiation can strongly repress SAS responses triggered by low R:FR ratios. Ambient UV-B radiation causes damaging effects on plants, such as DNA damage, and also induces adaptive photomorphogenic responses acting through a specific UV-B photoreceptor (UVR8). Therefore, the possibility exists that plants integrate information perceived by phyB and UVR8 to make decisions about growth and defense when faced with a complex light environment, such as the one that characterizes vegetation canopies. In this Letter, we address this possibility and discuss how the interplay between UV-B and R:FR signaling fine tunes plant growth and defense to optimize resource utilization in patchy canopy environments.Fil: Mazza, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Ballare, Carlos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico Chascomús. Instituto de Investigaciones Biotecnológicas (sede Chascomús); Argentin
    corecore