33 research outputs found

    Evaluation of the high resolution WRF-Chem (v3.4.1) air quality forecast and its comparison with statistical ozone predictions

    Get PDF
    An integrated modelling system based on the regional online coupled meteorology–atmospheric chemistry WRF-Chem model configured with two nested domains with horizontal resolutions of 11.1 and 3.7 km has been applied for numerical weather prediction and for air quality forecasts in Slovenia. In the study, an evaluation of the air quality forecasting system has been performed for summer 2013. In the case of ozone (O3) daily maxima, the first- and second-day model predictions have been also compared to the operational statistical O3 forecast and to the persistence. Results of discrete and categorical evaluations show that the WRF-Chem-based forecasting system is able to produce reliable forecasts which, depending on monitoring site and the evaluation measure applied, can outperform the statistical model. For example, the correlation coefficient shows the highest skill for WRF-Chem model O3 predictions, confirming the significance of the non-linear processes taken into account in an online coupled Eulerian model. For some stations and areas biases were relatively high due to highly complex terrain and unresolved local meteorological and emission dynamics, which contributed to somewhat lower WRF-Chem skill obtained in categorical model evaluations. Applying a bias correction could further improve WRF-Chem model forecasting skill in these cases

    Evaluation of the high resolution WRF-Chem (v3.4.1) air quality forecast and its comparison with statistical ozone predictions

    Get PDF
    An integrated modelling system based on the regional online coupled meteorology–atmospheric chemistry WRF-Chem model configured with two nested domains with horizontal resolutions of 11.1 and 3.7 km has been applied for numerical weather prediction and for air quality forecasts in Slovenia. In the study, an evaluation of the air quality forecasting system has been performed for summer 2013. In the case of ozone (O3) daily maxima, the first- and second-day model predictions have been also compared to the operational statistical O3 forecast and to the persistence. Results of discrete and categorical evaluations show that the WRF-Chem-based forecasting system is able to produce reliable forecasts which, depending on monitoring site and the evaluation measure applied, can outperform the statistical model. For example, the correlation coefficient shows the highest skill for WRF-Chem model O3 predictions, confirming the significance of the non-linear processes taken into account in an online coupled Eulerian model. For some stations and areas biases were relatively high due to highly complex terrain and unresolved local meteorological and emission dynamics, which contributed to somewhat lower WRF-Chem skill obtained in categorical model evaluations. Applying a bias correction could further improve WRF-Chem model forecasting skill in these cases

    Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models

    Get PDF
    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol–radiation interactions (ARIs) and indirect effects, resulting from aerosol–cloud–radiation interactions (ACIs). Online coupled meteorology–chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July–August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included

    An assessment of aerosol optical properties from remote-sensing observations and regional chemistry–climate coupled models over Europe

    Get PDF
    Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry–climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol–radiation (ARI) or/and aerosol–cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality–climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in the aerosol representation. The modelling results showed better skills when ARI+ACI interactions were included; hence this improvement in the representation of AOD (above 30 % in the model error) and AE (between 20 and 75 %) is important to provide a better description of aerosol–radiation–cloud interactions in regional climate models

    Sensitivity of feedback effects in CBMZ/MOSAIC chemical mechanism

    Get PDF
    To investigate the impact of the aerosol effects on meteorological variables and pollutant concentrations two simulations with the WRF-Chem model have been performed over Europe for year 2010. We have performed a baseline simulation without any feedback effects and a second simulation including the direct as well as the indirect aerosol effect. The paper describes the full configuration of the model, the simulation design, special impacts and evaluation. Although low aerosol particle concentrations are detected, the inclusion of the feedback effects results in an increase of solar radiation at the surface over cloudy areas (North-West, including the Atlantic) and decrease over more sunny locations (South-East). Aerosol effects produce an increase of the water vapor and decrease the planet boundary layer height over the whole domain except in the Sahara area, where the maximum particle concentrations are detected. Significant ozone concentrations are found over the Mediterranean area. Simulated feedback effects between aerosol concentrations and meteorological variables and on pollutant distributions strongly depend on the aerosol concentrations and the clouds. Further investigations are necessary with higher aerosol particle concentrations. WRF-Chem variables are evaluated using available hourly observations in terms of performance statistics. Standardized observations from the ENSEMBLE system web-interface were used. The research was developed under the second phase of Air Quality Model Evaluation International Initiative (AQMEII). WRF-Chem demonstrates its capability in capturing temporal and spatial variations of the major meteorological variables and pollutants, except the wind speed over complex terrain. The wind speed bias may affect the accuracy in the chemical predictions (NO2, SO2). The analysis of the correlations between simulated data sets and observational data sets indicates that the simulation with aerosol effects performs slightly better. These results indicate potential importance of the aerosol feedback effects and an urgent need to further improve the representations in current atmospheric models to reduce uncertainties at all scales

    Analysis of meteorology-chemistry interactions during air pollution episodes using online coupled models within AQMEII Phase-2

    Get PDF
    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).This study reviews the top ranked meteorology and chemistry interactions in online coupled models recommended by an experts’ survey conducted in COST Action EuMetChem and examines the sensitivity of those interactions during two pollution episodes: the Russian forest fires 25 Jul -15 Aug 2010 and a Saharan dust transport event from 1 Oct -31 Oct 2010 as a part of the AQMEII phase-2 exercise. Three WRF-Chem model simulations were performed for the forest fire case for a baseline without any aerosol feedback on meteorology, a simulation with aerosol direct effects only and a simulation including both direct and indirect effects. For the dust case study, eight WRF-Chem and one WRF-CMAQ simulations were selected from the set of simulations conducted in the framework of AQMEII. Of these two simulations considered no feedbacks, two included direct effects only and five simulations included both direct and indirect effects. The results from both episodes demonstrate that it is important to include the meteorology and chemistry interactions in online-coupled models. Model evaluations using routine observations collected in AQMEII phase-2 and observations from a station in Moscow show that for the fire case the simulation including only aerosol direct effects has better performance than the simulations with no aerosol feedbacks or including both direct and indirect effects. The normalized mean biases are significantly reduced by 10-20% for PM10 when including aerosol direct effects. The analysis for the dust case confirms that models perform better when including aerosol direct effects, but worse when including both aerosol direct and indirect effects, which suggests that the representation of aerosol indirect effects needs to be improved in the model.Peer reviewedFinal Published versio
    corecore