

A multi-model case study on aerosol-meteorology interactions with regional online coupled chemistry-meteorology models

R. Forkel, D. Brunner, A. Baklanov, A. Balzarini, R. Baró, M. Hirtl, L. Honzak,
P. Jiménez-Guerrero, O. Jorba, J. L. Pérez, G. Pirovano, R. San José,
W. Schröder, G. Tsegas, J. Werhahn, R. Wolke, R. Žabkar

Objective

Integrated or online coupled meteorology-chemistry models permit the simulation of

> aerosol radiative effects (direct aerosol effect)

- aerosol cloud interactions and resulting effects on radiation (indirect aerosol effect)
- Feedback effects to meteorology

 Different online coupled meteorology-chemistry models may respond differently to the same aerosol emissions

COST ES1004 (EuMetChem) Case Studies

Simulations for prescribed episodes with identical emissions and boundary conditions

- Base case: no interactions with simulated aerosol
 Only direct aerosol effect based on sim. aerosol
 Direct and indirect aerosol based on simulated
 - aerosol effect
- Two episodes in the year 2010
- ➢ The July/Aug. Russian heat and wildfires episode
- > A period in October 2010 (rainy, later a dust event)

COST ES1004 Case Studies: Setup

General setup (following AQMEII model intercomparison)

- 1-day meteo-only spin-up + 2-days simulations with chemistry
- Chemistry restarted from previous 2-day run

Long enough to allow feedback ↔ short enough for suppressing semi-direct effects?

- Most modelling domains cover entire Europe + North Atlantic
- Smaller domain for DE3 and CS2

Contributions to the case Studies

	Lead Institution	Model	Episode	Runs	Resolution
CS1	Univ. Lubljana, KIT/IMK-IFU *	WRF-Chem (a)	Fire, dust	Base, direct, dir&indir	23 km
CS2	Univ. Lubljana, KIT/IMK-IFU *	WRF-Chem (b)	Fire	Base, direct, dir&indir	9.9 km
ES1	Univ. Murcia	WRF-Chem (c)	Fire, dust	Base, direct, dir&indir	23 km
ES3	UPM-ESMG	WRF-Chem (d)	Fire, dust	Base, direct, dir&indir	23 km
DE3	IFT Leipzig	COSMO-MUSCAT	Fire, dust	Base, direct	0.15°
CH1	ΕΜΡΑ	COSMO-ART	Fire (3 days missing)	Base, direct	0.22°

(a) RADM2/MADE-SORGAM

(b) same as (c), but with higher resolution

(c) RADM2/MADE-SORGAM, Lin microphysics

(d) CBMZ/MOSAIC

*: Joint effort, also including ZAMG, RSE, UPM-ESMG

Russian heat wave and fire episode

Concentrate on

- CS1 (WRF-Chem with RADM2-MADE)
- DE3 (COSMO-MUSCAT with MADE-Soot)
- > CS2 (WRF-Chem with better resolution)
- ES3 (WRF-Chem with CBMZ-MOSAIC)

ES1 (like CS1, but with different cloud micropysics) Quite similar to CS1 contribution. See talks by **Rocío Baró** (this afternoon) and **Palacios Peña Laura** (tomorrow)

CH1: (COSMO-ART with MADE-Soot [not complete])

Comparison with observations near Moscow courtesy of Dr. Natalia Chubarova, Moscow State University . Surface measurement data from Mosecomonitoring, Meteorological Observatory of Moscow

Baseline PM10

Baseline AOD at Moscow

AOD at Moscow

Baseline AOD at 555nm

Effect on solar radiation

Episode mean global radiation difference between ,direct effect' and base (W m⁻²)

Solar radiation at Moscow

Global radiation: CS1 (WRF-Chem, green), DE3 (COSMO-MUSCAT, red)

Effect on Temperature

Episode mean temperature difference between ,direct effect' (C12) and baseline (C11)

WRF-Chem modal TEMP C12-C11 CS1

WRF-Chem modal TEMP C12-C11 CS2

TEMP (K)

Data Min = -1,1, Max = 0,2

-0,5-0,4-0,3-0,2-0,1 0,0 0,1 0,2 0,3 0 Data Min = -1,1, Max = 0,1

Local effect on Temperature: CS1 vs. obs

Local effect on Temperature: DE3 vs. obs

Effect on Temperature = Improvement?

Wet and ,Dust' October episode

Pronounced PM10 variablity among models for direct effect

renate.forkel@kit.edu

Wet and ,Dust' October episode

Direct effect: Response of WRF-Chem and COSMO-MUSCAT

Wet and ,Dust' October episode

Indirect & dir. effect: WRF-Chem modal and sectional aerosol Sectional Modal ES3 C23-C21 Cloud liquid water path CS1 C23-C21 Cloud liquid water path Difference in cloud LWP for 13 modal and sectional aerosol °.J. CLWP (g m-2) CLWP (g m-2) -72-64-56-48-40-32-24-16-8 0 8 16 24 32 40 48 56 64 72 -72 -64 -56 -48 -40 -32 -24 -16 -8 0 8 16 24 32 40 48 56 64 72 Data Min = -302, Max = 8 Data Min = -233, Max = 8 Modal Sectional ES3 C23-C21 T @ 2m CS1 C23-C21 T @ 2m Difference in T Note: positive dT 13 up to 0.5 K 2.001 TEMP (K TEMP (K -0,18 -0,14 -0,10 -0,06 -0,02 0,02 0,06 0,10 0,14 0,18 -0.18 -0.14 -0.10 -0.06 -0.02 0.02 0.06 0.10 0.14 0.18 Data Min = -0.37 Max = 0.34 Data Min = -0,29, Max = 0,46

Summary and conclusions

- Generally similar response to direct aerosol effect for different WRF-Chem and the COSMO-MUSCAT simulations for high aerosol concentrations
- Aerosol effect on temperature is only significant for fire hotspot areas with very high AOD during a short episode (and only for a=0.1)
- Different baseline assumptions can strongly affect the model response to aerosol
- Inter-model differences in simulated chemical and meteo variables are often larger than aerosol direct and indirect effects.

Acknowledgments:

- All groups for doing simulations and contributing their results
- UL and BSC for the space on their FTP server
- TNO (anthropogenic emissions database): Hugo Denier van der Gon
- ECMWF/MACC project & Météo-France/CNRM-GAME (chemical boundary conditions)
- FMI (fire emissions)
- Dr. Natalia Chubarova, Moscow State University and AERONET
- Members of the Cost action ES1004 EuMetChem

Thanks to everyone who contributed!

Thank you for your attention

