118 research outputs found

    Using DTAGs to understand sound use, behavior, and vessel and associated noise effects in Southern Resident killer whales

    Get PDF
    Prey availability and disturbance from vessels and noise are identified threats to the recovery of endangered Southern Resident killer whales. Vessels and noise can mask echolocation signals used to capture fish prey and/or disrupt foraging behavior with implications for energy acquisition. In the U.S., vessel regulations have been implemented since 2011 to protect killer whales from vessel disturbance, particularly given the extent of whale-watching activities in the Salish Sea. We utilized suction cup-attached digital acoustic recording tags (DTAGs), consisting of hydrophones and movement sensors, to measure received noise levels, understanding killer whale use of sound, and determine effects of vessels and noise on subsurface behavior. During the 29 tag deployments on individually identified killer whales, we collected detailed geo-referenced vessel data concurrently as conditions allowed, along with opportunistic observations of predation to validate feeding. Received noise levels (dB re 1microPa) were significantly different across years but not consistently lower after the implementation of vessel regulations. Of the vessel factors considered, both vessel count and speed, but not distance, explained differences in noise levels, which may reflect changes in whale-watching vessel practices after regulations implementation. Additionally, the analysis of data from these animal-borne tags allow us to better understand subsurface foraging behavior involving the use of sound, to quantify foraging rates at an individual level, and to understand detailed vessel and noise effects. The results, along with those of other related studies, inform conservation and management measures that aim to promote Southern Resident recovery

    The Building Blocks of Interoperability. A Multisite Analysis of Patient Demographic Attributes Available for Matching.

    Get PDF
    BackgroundPatient matching is a key barrier to achieving interoperability. Patient demographic elements must be consistently collected over time and region to be valuable elements for patient matching.ObjectivesWe sought to determine what patient demographic attributes are collected at multiple institutions in the United States and see how their availability changes over time and across clinical sites.MethodsWe compiled a list of 36 demographic elements that stakeholders previously identified as essential patient demographic attributes that should be collected for the purpose of linking patient records. We studied a convenience sample of 9 health care systems from geographically distinct sites around the country. We identified changes in the availability of individual patient demographic attributes over time and across clinical sites.ResultsSeveral attributes were consistently available over the study period (2005-2014) including last name (99.96%), first name (99.95%), date of birth (98.82%), gender/sex (99.73%), postal code (94.71%), and full street address (94.65%). Other attributes changed significantly from 2005-2014: Social security number (SSN) availability declined from 83.3% to 50.44% (p<0.0001). Email address availability increased from 8.94% up to 54% availability (p<0.0001). Work phone number increased from 20.61% to 52.33% (p<0.0001).ConclusionsOverall, first name, last name, date of birth, gender/sex and address were widely collected across institutional sites and over time. Availability of emerging attributes such as email and phone numbers are increasing while SSN use is declining. Understanding the relative availability of patient attributes can inform strategies for optimal matching in healthcare

    Impact of Patient-Clinical Team Secure Messaging on Communication Patterns and Patient Experience: Randomized Encouragement Design Trial

    Get PDF
    BACKGROUND: Although secure messaging (SM) between patients and clinical team members is a recommended component of continuous care, uptake by patients remains relatively low. We designed a multicomponent Supported Adoption Program (SAP) to increase SM adoption among patients using the Veterans Health Administration (VHA) for primary care. OBJECTIVE: Our goals were to (1) conduct a multisite, randomized, encouragement design trial to test the effectiveness of an SAP designed to increase patient engagement with SM through VHA\u27s online patient portal (My HealtheVet [MHV]) and (2) evaluate the impact of the SAP and patient-level SM adoption on perceived provider autonomy support and communication. Patient-reported barriers to SM adoption were also assessed. METHODS: We randomized 1195 patients at 3 VHA facilities who had MHV portal accounts but had never used SM. Half were randomized to receive the SAP, and half served as controls receiving usual care. The SAP consisted of encouragement to adopt SM via mailed educational materials, proactive SM sent to patients, and telephone-based motivational interviews. We examined differences in SM adoption rates between SAP recipients and controls at 9 months and 21 months. Follow-up telephone surveys were conducted to assess perceived provider autonomy support and self-report of telephone communication with clinical teams. RESULTS: Patients randomized to the SAP had significantly higher rates of SM adoption than the control group (101/595, 17.0% vs 40/600, 6.7%; P \u3c .001). Most adopters in the SAP sent their first message without a motivational interview (71/101, 70.3%). The 10-percentage point difference in adoption persisted a full year after the encouragement ended (23.7%, 142/600 in the SAP group vs 13.5%, 80/595 in the control group, P \u3c .001). We obtained follow-up survey data from 49.54% (592/1195) of the participants. SAP participants reported higher perceived provider autonomy support (5.7 vs 5.4, P=.007) and less telephone use to communicate with their provider (68.8% vs 76.0%, P=.05), compared to patients in the control group. Patient-reported barriers to SM adoption included self-efficacy (eg, not comfortable using a computer, 24%), no perceived need for SM (22%), and difficulties with portal password or login (17%). CONCLUSIONS: The multicomponent SAP was successful in increasing use of SM 10 percentage points above standard care; new SM adopters reported improved perceptions of provider autonomy support and less use of the telephone to communicate with their providers. Still, despite the encouragement and technical assistance provided through the SAP, adoption rates were lower than anticipated, reaching only 24% at 21 months (10% above controls). Common barriers to adoption such as limited perceived need for SM may be more challenging to address and require different interventions than barriers related to patient self-efficacy or technical difficulties. TRIAL REGISTRATION: ClinicalTrials.gov NCT02665468; https://clinicaltrials.gov/ct2/show/NCT02665468

    Transmission Investment in the Peruvian Electricity Market: Theory and Applications

    Full text link
    This research presents an application of the Hogan, Rosellón and Vogelsang (2010) (HRV) mechanism to promote electricity transmission network expansion in the Peruvian electricity transmission system known as SEIN (Sistema Eléctrico Interconectado Nacional). The HRV mechanism combines the merchant and regulatory approaches to promote investment into transmission grids. This mechanism gives incentives for efficient investment in expansion of the network by the rebalancing over time of the fixed and variable charges of a two-part tariff in the framework of a wholesale electricity market with locational pricing. The expansion of the network is carried out through the sale of Financial Transmission Rights (FTR's) for the congested lines. The mechanism is applied for 103 nodes of the SEIN using detailed characteristics of generators, nodes and transmission lines. Under Laspeyres weights and linear cost of expansion of transmission capacity, it is shown that prices converge to lower levels as a result of increased transmission capacity

    Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis

    Get PDF
    SummaryEosinophils are now recognized as multifunctional leukocytes that provide critical homeostatic signals to maintain other immune cells and aid tissue repair. Paradoxically, eosinophils also express an armory of granule-localized toxins and hydrolases believed to contribute to pathology in inflammatory disease. How eosinophils deliver their supporting functions while avoiding self-inflicted injury is poorly understood. We have demonstrated that cystatin F (CF) is a critical survival factor for eosinophils. Eosinophils from CF null mice had reduced lifespan, reduced granularity, and disturbed granule morphology. In vitro, cysteine protease inhibitors restored granularity, demonstrating that control of cysteine protease activity by CF is critical for normal eosinophil development. CF null mice showed reduced pulmonary pathology in a model of allergic lung inflammation but also reduced ability to combat infection by the nematode Brugia malayi. These data identify CF as a “cytoprotectant” that promotes eosinophil survival and function by ensuring granule integrity.Video Abstrac

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    corecore