90 research outputs found
The Advocate
Headlines Include: Laurels For Feerick: An Alumnus To Remember; Crime at Fordham; Who\u27s Next?, Film at 11https://ir.lawnet.fordham.edu/student_the_advocate/1007/thumbnail.jp
Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material
<p>Abstract</p> <p>Background</p> <p>Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery.</p> <p>The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68) of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years) postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years) and the average weight 102.3 kg (75 to 130 kg). The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%.</p> <p>Methods</p> <p>A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material.</p> <p>Results</p> <p>Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck connection. A continuous abrasion and repassivation process with a subsequent cold welding at the titanium alloy modular interface. Surface layers of 10 - 30 Όm titanium oxide were observed. Surface cracks caused by fretting or fretting corrosion finally lead to fatigue fracture of the titanium alloy modular neck adapters. Neck adapters made of cobalt chrome alloy show significantly reduced micromotions especially in case of contaminated cone connection. With a cobalt-chromium neck the micromotions can be reduced by a factor of 3 compared to the titanium neck. The incidence of fretting corrosion was also substantially lower with the cobalt-chromium neck configuration.</p> <p>Conclusions</p> <p>Failure of modular titanium alloy neck adapters can be initiated by surface micromotions due to surface contamination or highly loaded implant components. In the present study, the patients at risk were men with an average weight over 100 kg. Modular cobalt chrome neck adapters provide higher safety compared to titanium alloy material.</p
The crosstalk between neuropilin-1 and tumor necrosis factor-α in endothelial cells
Tumor necrosis factor-α (TNFα) is a master cytokine which induces expression of chemokines and adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in endothelial cells to initiate the vascular inflammatory response. In this study, we identified neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, as a modulator of TNFα-induced inflammatory response of endothelial cells. NRP1 shRNA expression suppressed TNFα-stimulated leukocyte adhesion and expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs). Likewise, it reduced TNFα-induced phosphorylation of MAPK p38 but did not significantly affect other TNF-induced signaling pathways, such as the classical NFÎșB and the AKT pathway. Immunofluorescent staining demonstrated co-localization of NRP1 with the two receptors of TNF, TNFR1 and TNFR2. Co-immunoprecipitation further confirmed that NRP1 was in the same protein complex or membrane compartment as TNFR1 and TNFR2, respectively. Modulation of NRP1 expression, however, neither affected TNFR levels in the cell membrane nor the receptor binding affinities of TNFα. Although a direct interface between NRP1 and TNFα/TNFR1 appeared possible from a protein docking model, a direct interaction was not supported by binding assays in cell-free microplates and cultured cells. Furthermore, TNFα was shown to downregulate NRP1 in a time-dependent manner through TNFR1-NFÎșB pathway in HUVECs. Taken together, our study reveals a novel reciprocal crosstalk between NRP1 and TNFα in vascular endothelial cells
UBTF::ATXN7L3 gene fusion defines novel B cell precursor ALL subtype with CDX2 expression and need for intensified treatment
Genomic aberrationsâgene fusions in the majority of casesâand corresponding transcriptional regulations define an increasingly complex landscape of molecular subtypes in B cell precursor acute lymphoblastic leukemia (BCP-ALL) [1]. Up to 15% of patients cannot be allocated to established subtypes, suggesting the presence of unrecognized driversâespecially in adult patients who have been less studied so far
Family Size and Turnover Rates among Several Classes of Small NonâProtein-Coding RNA Genes in Caenorhabditis Nematodes
It is important to understand the forces that shape the size and evolutionary histories of gene families. Here, we investigated the evolution of nonâprotein-coding RNA genes in the genomes of Caenorhabditis nematodes. We specifically focused on nested arrangements, that is, cases in which an RNA gene is entirely contained in an intron of another gene. Comparing these arrangements between species simplifies the inference of orthology and, therefore, of evolutionary fates of nested genes. Two distinct patterns are evident in the data. Genes encoding small nuclear RNAs (snRNAs) and transfer RNAs form large families, which have persisted since before the common ancestor of Metazoa. Yet, individual genes die relatively rapidly, with few orthologs having survived since the divergence of Caenorhabditis elegans and Caenorhabditis briggsae. In contrast, genes encoding small nucleolar RNAs (snoRNAs) are either single-copy or form small families. Individual snoRNAs turn over at a relatively slow rateâmost C. elegans genes have clearly identifiable orthologs in C. briggsae. We also found that in Drosophila, genes from larger snRNA families die at a faster rate than their counterparts from single-gene families. These results suggest that a relationship between family size and the rate of gene turnover may be a general feature of genome evolution
Poised to Prosper? A Cross-system Comparison of Climate Change Effects on Native and Non-native Species Performance
Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non-native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta-analytical approach to broadly evaluate whether non-native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non-native (157 species) and co-occurring native species (204 species) under different temperature, CO2 and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non-native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO2 largely inhibited native species. There was a general trend towards stronger responses among non-native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions
Form follows function: Morphological and immunohistological insights into epithelialâmesenchymal transition characteristics of tumor buds
In cancer biology, the architectural concept âform follows functionâ is reflected by cell morphology, migration, and epithelialâmesenchymal transition protein pattern. In vivo, features of epithelialâmesenchymal transition have been associated with tumor budding, which correlates significantly with patient outcome. Hereby, the majority of tumor buds are not truly detached but still connected to a major tumor mass. For detailed insights into the different tumor bud types and the process of tumor budding, we quantified tumor cells according to histomorphological and immunohistological epithelialâmesenchymal transition characteristics. Three-dimensional reconstruction from adenocarcinomas (pancreatic, colorectal, lung, and ductal breast cancers) was performed as published. Tumor cell morphology and epithelialâmesenchymal transition characteristics (represented by zinc finger E-box-binding homeobox 1 and E-Cadherin) were analyzed qualitatively and quantitatively in a three-dimensional context. Tumor buds were classified into main tumor mass, connected tumor bud, and isolated tumor bud. Cell morphology and epithelialâmesenchymal transition marker expression were assessed for each tumor cell. Epithelialâmesenchymal transition characteristics between isolated tumor bud and connected tumor bud demonstrated no significant differences or trends. Tumor cell count correlated significantly with epithelialâmesenchymal transition and histomorphological characteristics. Regression curve analysis revealed initially a loss of membranous E-Cadherin, followed by expression of cytoplasmic E-Cadherin and subsequent expression of nuclear zinc finger E-box-binding homeobox 1. Morphologic changes followed later in this sequence. Our data demonstrate that connected and isolated tumor buds are equal concerning immunohistochemical epithelialâmesenchymal transition characteristics and histomorphology. Our data also give an insight in the process of tumor budding. While there is a notion that the epithelialâmesenchymal transition zinc finger E-box-binding homeobox 1âE-Cadherin cascade is initiated by zinc finger E-box-binding homeobox 1, our results are contrary and outline other possible pathways influencing the regulation of E-Cadherin
6-OHDA-induced dopaminergic neurodegeneration in <i>Caenorhabditis elegans</i> is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33
<div><p>Oxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinsonâs disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting <i>Caenorhabditis elegans</i> dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the <u>t</u>rans<u>t</u>hyretin-<u>r</u>elated gene <i>ttr-33</i>. The only described <i>C</i>. <i>elegans</i> transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of <i>C</i>. <i>elegans</i> larvae and is predicted to be a secreted protein. TTR-33 protects <i>C</i>. <i>elegans</i> from oxidative stress induced by paraquat or H<sub>2</sub>O<sub>2</sub> at an organismal level. The increased oxidative stress sensitivity of <i>ttr-33</i> mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the <i>C</i>. <i>elegans</i> cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress.</p></div
- âŠ