265 research outputs found

    Publications of the space physiology and countermeasures program, Musculoskeletal Discipline: 1980-1990

    Get PDF
    A 10-year cumulative bibliography of publications resulting from research supported by the musculoskeletal discipline of the space physiology and countermeasures program of NASA's Life Sciences Division is provided. Primary subjects are bone, mineral, and connective tissue, and muscle. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified by asterisk. Publications are identified by a record number corresponding with their entry in the life sciences bibliographic database, maintained by the George Washington University

    Predictors and pathways of language and motor development in four prospective cohorts of young children in Ghana, Malawi, and Burkina Faso

    Get PDF
    BackgroundPrevious reviews have identified 44 risk factors for poor early child development (ECD) in low- and middle-income countries. Further understanding of their relative influence and pathways is needed to inform the design of interventions targeting ECD.MethodsWe conducted path analyses of factors associated with 18-month language and motor development in four prospective cohorts of children who participated in trials conducted as part of the International Lipid-Based Nutrient Supplements (iLiNS) Project in Ghana (n = 1,023), Malawi (n = 675 and 1,385), and Burkina Faso (n = 1,122). In two cohorts, women were enrolled during pregnancy. In two cohorts, infants were enrolled at 6 or 9 months. In multiple linear regression and structural equation models (SEM), we examined 22 out of 44 factors identified in previous reviews, plus 12 additional factors expected to be associated with ECD.ResultsOut of 42 indicators of the 34 factors examined, 6 were associated with 18-month language and/or motor development in 3 or 4 cohorts: child linear and ponderal growth, variety of play materials, activities with caregivers, dietary diversity, and child hemoglobin/iron status. Factors that were not associated with child development were indicators of maternal Hb/iron status, maternal illness and inflammation during pregnancy, maternal perceived stress and depression, exclusive breastfeeding during 6 months postpartum, and child diarrhea, fever, malaria, and acute respiratory infections. Associations between socioeconomic status and language development were consistently mediated to a greater extent by caregiving practices than by maternal or child biomedical conditions, while this pattern for motor development was not consistent across cohorts.ConclusionsKey elements of interventions to ensure quality ECD are likely to be promotion of caregiver activities with children, a variety of play materials, and a diverse diet, and prevention of faltering in linear and ponderal growth and improvement in child hemoglobin/iron status

    Medical School Without Walls: 50 Years of Regional Campuses at Indiana University School of Medicine

    Get PDF
    The history of Indiana University School of Medicine (IUSM) dates to 1871, when Indiana Medical College entered into an affiliation with Indiana University in Bloomington to offer medical education. In 1971, the Indiana General Assembly passed a bill to create and fund a distributed model for medical education for which IUSM was responsible, an innovative approach to implementing a statewide medical education program. IUSM became one of the first U.S. medical schools to implement what is today known as a regional medical campus model. This regional medical campus system has permitted IUSM to expand enrollment based on national and local concerns about physician shortages, increase access to care locally, support expansion of graduate medical education, and provide opportunities for research and scholarship by faculty and students statewide. This effort was made possible by partnerships with other universities and health care systems across the state and the support of local community and state leaders. The model is a forward-thinking and cost-effective way to educate physicians for service in the state of Indiana and is applicable to others. This article highlights milestones in IUSM’s 50-year history of regional medical education, describes the development of the regional medical campus model, recognizes significant achievements over the years, shares lessons learned, and discusses considerations for the future of medical education

    Report of the 2020-2021 Professional Affairs Standing Committee: Pharmacists Unique Role and Integration in Healthcare Settings

    Get PDF
    EXECUTIVE SUMMARY The 2020-21 Professional Affairs Committee was charged to (1) Read all six reports from the 2019-20 AACP standing committees to identify elements of these reports that are relevant to the committee’s work this year; (2) Identify opportunities and models of integration of pharmacist care services in physician and other health provider practices beyond primary care; (3) Differentiate and make the case for the integration of pharmacist care services from that of other mid-level providers; and (4) From the work on the aforementioned charges, identify salient activities for the Center To Accelerate Pharmacy Practice Transformation and Academic Innovation (CTAP) for consideration by the AACP Strategic Planning Committee and AACP staff. This report provides information on the committee’s process to address the committee charges, describes the rationale for and the results from a call to colleges and schools of pharmacy to provide information on their integrating pharmacist care services in physician and other health provider practices beyond primary care practice, and discusses how pharmacist-provided patient care services differ from those provided by other healthcare providers. The committee offers a revision to a current association policy statement, a proposed policy statement as well as recommendations to CTAP and AACP and suggestions to colleges and schools of pharmacy pertaining to the committee charges

    Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins

    Get PDF
    The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF^(Fbxw7) is extraordinarily stable, but, in the Nedd8-deconjugated state, the cullin-binding protein Cand1 augments its dissociation by one-million-fold. Binding and ubiquitylation assays show that Cand1 is a protein exchange factor that accelerates the rate at which Cul1-Rbx1 equilibrates with multiple F box protein-Skp1 modules. Depletion of Cand1 from cells impedes recruitment of new F box proteins to pre-existing Cul1 and profoundly alters the cellular landscape of SCF complexes. We suggest that catalyzed protein exchange may be a general feature of dynamic macromolecular machines and propose a hypothesis for how substrates, Nedd8, and Cand1 collaborate to regulate the cellular repertoire of SCF complexes

    Development and characterization of a Yucatan miniature biomedical pig permanent middle cerebral artery occlusion stroke model

    Get PDF
    BACKGROUND: Efforts to develop stroke treatments have met with limited success despite an intense need to produce novel treatments. The failed translation of many of these therapies in clinical trials has lead to a close examination of the therapeutic development process. One of the major factors believed to be limiting effective screening of these treatments is the absence of an animal model more predictive of human responses to treatments. The pig may potentially fill this gap with a gyrencephalic brain that is larger in size with a more similar gray-white matter composition to humans than traditional stroke animal models. In this study we develop and characterize a novel pig middle cerebral artery occlusion (MCAO) ischemic stroke model. METHODS: Eleven male pigs underwent MCAO surgery with the first 4 landrace pigs utilized to optimize stroke procedure and 7 additional Yucatan stroked pigs studied over a 90 day period. MRI analysis was done at 24 hrs and 90 days and included T2w, T2w FLAIR, T1w FLAIR and DWI sequences and associated ADC maps. Pigs were sacrificed at 90 days and underwent gross and microscopic histological evaluation. Significance in quantitative changes was determined by two-way analysis of variance and post-hoc Tukey’s Pair-Wise comparisons. RESULTS: MRI analysis of animals that underwent MCAO surgery at 24 hrs had hyperintense regions in T2w and DWI images with corresponding ADC maps having hypointense regions indicating cytotoxic edema consistent with an ischemic stroke. At 90 days, region of interest analysis of T1 FLAIR and ADC maps had an average lesion size of 59.17 cc, a loss of 8% brain matter. Histological examination of pig brains showed atrophy and loss of tissue, consistent with MRI, as well as glial scar formation and macrophage infiltration. CONCLUSIONS: The MCAO procedure led to significant and consistent strokes with high survivability. These results suggest that the pig model is potentially a robust system for the study of stroke pathophysiology and potential diagnostics and therapeutics

    Path Analyses of Risk Factors for Linear Growth Faltering in Four Prospective Cohorts of Young Children in Ghana, Malawi and Burkina Faso

    Get PDF
    Stunting prevalence is an indicator of a country’s progress towards United Nations’ Sustainable Development Goal 2, which is to end hunger and achieve improved nutrition. Accelerating progress towards reducing stunting requires a deeper understanding of the factors that contribute to linear growth faltering. We conducted path analyses of factors associated with 18-month length-for-age z-score (LAZ) in four prospective cohorts of children who participated in trials conducted as part of the International Lipid-Based Nutrient Supplements Project in Ghana (n=1039), Malawi (n=684 and 1504) and Burkina Faso (n=2619). In two cohorts, women were enrolled during pregnancy. In two other cohorts, infants were enrolled at 6 or 9 months. We examined the association of 42 indicators of environmental, maternal, caregiving and child factors with 18-month LAZ. Using structural equation modelling, we examined direct and indirect associations through hypothesised mediators in each cohort. Out of 42 indicators, 2 were associated with 18-month LAZ in three or four cohorts: maternal height and body mass index (BMI). Six factors were associated with 18-month LAZ in two cohorts: length for gestational age z-score (LGAZ) at birth, pregnancy duration, improved household water, child dietary diversity, diarrhoea incidence and 6-month or 9-month haemoglobin concentration. Direct associations were more prevalent than indirect associations, but 30%–62% of the associations of maternal height and BMI with 18-month LAZ were mediated by LGAZ at birth. Factors that were not associated with LAZ were maternal iron status, illness and inflammation during pregnancy, maternal stress and depression, exclusive breast feeding during 6 months post partum, feeding frequency and child fever, malaria and acute respiratory infections. These findings may help in identifying interventions to accelerate progress towards reducing stunting; however, much of the variance in linear growth status remained unaccounted for by these 42 individual-level factors, suggesting that community-level changes may be needed to achieve substantial progress

    Why small-quantity lipid-based nutrient supplements should be integrated into comprehensive strategies to prevent child undernutrition in nutritionally vulnerable populations : response to Gupta et al.’s commentary

    Get PDF
    We write in response to the commentary by Gupta et al. (2023) on small-quantity lipid-based nutrient supplements (SQ-LNS) for infants and young children 6 to 24 months of age, which was prompted by the recent brief guidance note from UNICEF (2023) explaining when, why and how SQ-LNS are being prioritized as part of their package of preventive actions to combat early childhood malnutrition. The UNICEF document was disseminated shortly after publication of a correspondence in Nature Food (Aguayo et al. 2023), authored by nutrition leaders from several organizations, that summarized the evidence on the benefits of SQ-LNS and called for this intervention to be scaled up and integrated into programs for populations in which child undernutrition is prevalent and dietary quality is very poor. We agree with Gupta et al. that child malnutrition is the result of many factors and there is no single “quick fix” or “magic bullet”. In fact, the above-cited documents state clearly and frequently that provision of SQ-LNS is not a stand-alone intervention and must be integrated into comprehensive strategies to improve infant and young child feeding (IYCF), including the promotion of dietary diversity, as well as other actions needed to prevent malnutrition. SQ-LNS are intended for vulnerable populations who lack access to an affordable, nutritionally adequate complementary feeding diet and have high rates of stunting, wasting and mortality. In such populations, we agree with Gupta et al. that IYCF messages alone are not enough. This is precisely why SQ-LNS were originally developed

    Addressing global ruminant agricultural challenges through understanding the rumen microbiome::Past, present and future

    Get PDF
    The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges
    • 

    corecore