45 research outputs found
Renin and the IGFII/M6P Receptor System in Cardiac Biology
Nonenzymatic cardiac activities of renin are well described during the last years and contribute either to cardiac-specific effects of the renin-angiotensin-aldosterone-system (RAAS) or to the pharmacological effects of RAAS inhibition. The interaction of renin with insulin-like growth factor II/mannose-6-phosphate (IGFII/M6P) receptors participates in nonclassical renin effects and contributes to cardiac remodelling caused by RAAS activation. The current findings suggest an important role for renin IGFII/M6P receptor interaction in cardiac adaptation to stress and support the idea that excessive accumulation of renin during inhibition of RAAS directly contributes to blood pressure-independent effects of these pharmacological interventions. It becomes a challenge for future studies focussing on chronic hypertension or myocardial infarction to comprise regulatory adaptations of the kidney, the main source of plasma renin and prorenin, because they directly contribute to key steps in regulation of cardiac (mal)adaptation via IGFII/M6P receptors. This receptor system is part of peptide/receptor interactions that modifies and possibly limits adverse remodelling effects caused by angiotensin II. Evaluation of interactions of renin with other pro-hypertrophic agonists is required to decide whether this receptor may become a target of pharmacological intervention
Adenine Nucleotide Translocase 1 Expression is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes
The cardiac-specific overexpression of the adenine nucleotide translocase 1 (ANT1) has cardioprotective effects in various experimental heart disease models. Here, we analyzed the link between ANT1 expression and heat shock protein 27 (HSP27)-mediated toll-like receptor 4 (TLR4) signaling, which represents a novel communication pathway between mitochondria and the extracellular environment. The interaction between ANT1 and HSP27 was identified by co-immunoprecipitation from neonatal rat cardiomyocytes. ANT1 transgenic (ANT1-TG) cardiomyocytes demonstrated elevated HSP27 expression levels. Increased levels of HSP27 were released from the ANT1-TG cardiomyocytes under both normoxic and hypoxic conditions. Extracellular HSP27 stimulated TLR4 signaling via protein kinase B (AKT). The HSP27-mediated activation of the TLR4 pathway was more pronounced in ANT1-TG cardiomyocytes than in wild-type (WT) cardiomyocytes. HSP27-specific antibodies inhibited TLR4 activation and the expression of HSP27. Inhibition of the HSP27-mediated TLR4 signaling pathway with the TLR4 inhibitor oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) reduced the mitochondrial membrane potential (∆ψm) and increased caspase 3/7 activity, which are both markers for cell stress. Conversely, treating cardiomyocytes with recombinant HSP27 protein stimulated TLR4 signaling, induced HSP27 and ANT1 expression, and stabilized the mitochondrial membrane potential. The activation of HSP27 signaling was verified in ischemic ANT1-TG heart tissue, where it correlated with ANT1 expression and the tightness of the inner mitochondrial membrane. Our study shows a new mechanism by which ANT1 is part of the cardioprotective HSP27-mediated TLR4 signaling
Connexin 43 phosphorylation by casein kinase 1 is essential for the cardioprotection by ischemic preconditioning
Myocardial connexin 43 (Cx43) forms gap junctions and hemichannels, and is also present within subsarcolemmal mitochondria. The protein is phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and casein kinase 1 (CK1). A reduction in Cx43 content abrogates myocardial infarct size reduction by ischemic preconditioning (IPC). The present study characterizes the contribution of Cx43 phosphorylation towards mitochondrial function, hemichannel activity, and the cardioprotection by IPC in wild-type (WT) mice and in mice in which Cx43-phosphorylation sites targeted by above kinases are mutated to non-phosphorylatable residues (Cx43(MAPKmut), Cx43(PKCmut), and Cx43(CK1mut) mice). The amount of Cx43 in the left ventricle and in mitochondria was reduced in all mutant strains compared to WT mice and Cx43 phosphorylation was altered at residues not directly targeted by the mutations. Whereas complex 1 respiration was reduced in all strains, complex 2 respiration was decreased in Cx43(CK1mut) mice only. In Cx43 epitope-mutated mice, formation of reactive oxygen species and opening of the mitochondrial permeability transition pore were not affected. The hemichannel open probability was reduced in Cx43(PKCmut) and Cx43(CK1mut) but not in Cx43(MAPKmut) cardiomyocytes. Infarct size in isolated saline-perfused hearts after ischemia/reperfusion (45 min/120 min) was comparable between genotypes and was significantly reduced by IPC (3 x 3 min ischemia/5 min reperfusion) in WT, Cx43(MAPKmut), and Cx43(PKCmut), but not in Cx43(CK1mut) mice, an effect independent from the amount of Cx43 and the probability of hemichannel opening. Taken together, our study shows that alterations of Cx43 phosphorylation affect specific cellular functions and highlights the importance of Cx43 phosphorylation by CK1 for IPC's cardioprotection
Inhibition of AP-1 signaling by JDP2 overexpression protects cardiomyocytes against hypertrophy and apoptosis induction
AimsExpression and activity of the transcription factor AP-1 are enhanced during cardiac remodelling and heart failure progression. In order to test if AP-1 inhibition may limit processes contributing to cardiac remodelling, ventricular cardiomyocytes of mice with cardiac overexpression of the AP-1 inhibitor JDP2 were analysed under stimulation of hypertrophy, apoptosis, or contractile function.Methods and resultsThree models of JDP2 overexpressing mice were analysed: JDP2 was overexpressed either life-long, for 7 weeks, or 1 week. Then cardiomyocytes were isolated and stimulated with β-adrenoceptor agonist isoprenaline (ISO, 50 nM). This enhanced cross-sectional area and the rate of protein synthesis in WT but not in JDP2 overexpressing cardiomyocytes. To induce apoptosis, cardiomyocytes were stimulated with 3 ng/mL TGFβ1. Again, JDP2 overexpression prevented apoptosis induction compared with WT cells. Determination of contractile function under electrical stimulation at 2 Hz revealed enhancement of cell shortening, and contraction and relaxation velocities under increasing ISO concentrations (0.3-30 nM) in WT cells. This inotropic effect was abrogated in JDP2 overexpression cells. Responsiveness to increased extracellular calcium concentrations was also impaired in JDP2 overexpressing cardiomyocytes. Simultaneously, a reduction of SERCA expression was found in JDP2 mice.ConclusionA central role of AP-1 in the induction of hypertrophy and apoptosis in cardiomyocytes is demonstrated. Besides these protective effects of AP-1 inhibition on factors of cardiac remodelling, AP-1-inhibition impairs contractile function. Therefore, AP-1 acts as a double-edged sword that mediates mal-adaptive cardiac remodelling, but is required for maintaining a proper contractile function of cardiomyocytes. © 2013 Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013
Проект реконструкции подстанции 110/35/10 кВ Весенняя филиала ПАО "МРСК-Сибири" «Кузбассэнерго-РЭС»
Объект исследования ПС 110/35/10 кВ Весенняя филиала ПАО "МРСК-Сибири" «Кузбассэнерго-РЭС»
Цель исследования – разработка проекта по реконструкции подстанции 110/35/10 кВ Весенняя.
В процессе исследования проведен выбор и расчетная проверка основного электротехнического оборудования.
В результате проведенного исследования было выявлено, что реконструкция подстанции приведет к улучшению экономических показателей соответственно повышению надежности оборудования и качества передаваемой электроэнергии.The object of study substation 110/35/10 kV Spring, a branch of OAO IDGC of Siberia" "Kuzbassenergo-RES"
Research objective – development of the project on reconstruction of substation 110/35/10 kV Spring.
In the research process selection and design verification of the basic electrical equipment.
In the result of the study revealed that the reconstruction of the substation will lead to the improvement of economic indicators, respectively, to improve the reliability of equipment and quality of the power transmitted
Testate amoebae in pollen slides
Among the non-pollen micro-fossils commonly encountered in Quaternary sediment samples prepared for pollen analysis are many shells of testate amoebae. Testate amoebae are eukaryotic micro-organisms which are increasingly used in ecological and palaeoecological studies, particularly as indicators of hydrological change in Sphagnum-dominated peatlands. In this study we address the extent to which testate amoebae are used in palynological research, the key challenges to more widespread use, and the extent to which ecological information is retained in the testate amoeba assemblages of standard palynological slides. To achieve this we review the literature on the use of testate amoebae in palynology, compare testate amoeba records produced by palynological and water-based preparation methods and carry out simulations using previously-derived datasets. Our results show that testate amoebae are widely encountered in Quaternary palynological studies, primarily in peatlands, but the information which they can provide is undermined by limited taxonomic knowledge. Many taxa are destroyed in pollen preparations, but for taxa that are retained patterns of abundance parallel those determined using water-based preparation methods. Although the loss of sensitive taxa limits the ecological information contained in testate amoeba assemblages the information preserved is likely to be useful in a multiproxy approach to palaeoenvironmental reconstruction. To help improve taxonomic awareness and encourage the use of testate amoebae in palynology we present a basic introduction to testate amoeba taxonomy and a guide to the taxonomic literature
Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis
The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome