181 research outputs found
Age-related Liquefaction Resistance of Pleistocene Coastal Plain Sands in South Carolina
Soils of Pleistocene age in the South Carolina Coastal Plain have experienced liquefaction due to historic and pre-historic earthquakes. Numerous field and laboratory studies have shown that aged soil deposits maintain a greater resistance to liquefaction than younger soil deposits. The currently available methods for assessing liquefaction potential are based on cases in which soils are of Holocene age or younger (\u3c 10,000 yrs). The Pleistocene age soils that were tested and characterized varied in age from about 200,000 years old to 1,400,000 years old. Several sites were investigated using field methods that included the seismic cone penetration test, cone penetration test, standard penetration test, and flat plate dilatometer. Piezometers were installed at the sites. Undisturbed soil samples were retrieved from the subsurface and frozen ex situ to minimize sample disturbance during transportation and laboratory handling. The undisturbed samples were used for cyclic triaxial testing in the laboratory and were tested for shear wave velocity and compression wave velocity using in-cell transducers. Laboratory tests were performed to determine the specific gravity, grain size distribution, moisture content, unit weight, Atterberg limits, Unified Soil Classification, and visual-manual description. Optical petrography and scanning electron microscopy were used to determine the mineral content of the soils, to view grain characteristics, and to view microscopic features that were part of the soil aging process.
Laboratory index tests showed that Pleistocene soils consisted predominately of poorly-graded fine sands, silty sands, and clayey sands. Shear wave velocities from the cyclic triaxial test specimens were comparable to the in situ shear wave velocities measured using the seismic cone penetration test. Compression wave velocities from the cyclic triaxial specimens were indicative of a saturated state in the soil prior to cyclic triaxial testing. The optical petrography showed that the dominant mineral in the sands consisted of quartz, which was accompanied by minor amounts of mica, feldspar, and opaque minerals. Scanning electron microscopy indicated the presence of kaolin, showed alteration features on quartz sand surfaces, and also showed the presence of soil fabric in the form of preferred grain orientation. Field testing using the standard penetration test and the cone penetration test indicated that the Pleistocene soils maintain a higher cyclic resistance ratio than the Holocene soils used in the current methods of analysis, however, the soils remain susceptible to liquefaction given expected peak ground accelerations where the cyclic stress ratio exceeds the cyclic resistance ratio.
Based on the known ages of the soils, the two methods of analysis using the cone penetration test (Idriss and Boulanger, 2008 and Youd et al., 2001) showed out-of-sequence age versus cyclic resistance ratio for the Idriss and Boulanger method and a properly sequenced age versus cyclic resistance ratio for the Youd et al. method. The standard penetration test showed out-of-sequence age versus cyclic resistance ratio for all methods and the difference between the Holocene liquefaction curve and the Pleistocene liquefaction curve was less than the difference for the cone penetration tests. Field cyclic resistance ratios derived from the laboratory cyclic triaxial tests, which were adjusted for bi-directional motion and in situ stress, resided at or below the cyclic resistance ratios determined for the Pleistocene soils from the field tests and in some cases below the Holocene liquefaction curve
Measurement of Electromagnetic Activity of Yeast Cells at 42 GHz
This paper discusses the possibility of using a device composed of a resonant cavity, preamplifiers, and a spectrum analyzer to detect electromagnetic emission of yeast cells at a frequency of about 42 GHz. Measurement in this frequency range is based on the Frohlich\'s postulate of coherent polar oscillations as a fundamental biophysical property of biological systems and on the experiments of Grundler and Keilmann who disclosed effects of exposure to the electromagnetic field at 42 GHz on the growth rate of yeast cells. This article includes a detailed description of the laboratory equipment and the methods used to evaluate the obtained results
Lymph node removal enhances corneal graft survival in mice at high risk of rejection
Peer reviewedPublisher PD
Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin
Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications
Optical techniques are finding widespread use in analytical chemistry for
chemical and bio-chemical analysis. During the past decade, there has been an
increasing emphasis on miniaturization of chemical analysis systems and
naturally this has stimulated a large effort in integrating microfluidics and
optics in lab-on-a-chip microsystems. This development is partly defining the
emerging field of optofluidics. Scaling analysis and experiments have
demonstrated the advantage of micro-scale devices over their macroscopic
counterparts for a number of chemical applications. However, from an optical
point of view, miniaturized devices suffer dramatically from the reduced
optical path compared to macroscale experiments, e.g. in a cuvette. Obviously,
the reduced optical path complicates the application of optical techniques in
lab-on-a-chip systems. In this paper we theoretically discuss how a strongly
dispersive photonic crystal environment may be used to enhance the light-matter
interactions, thus potentially compensating for the reduced optical path in
lab-on-a-chip systems. Combining electromagnetic perturbation theory with
full-wave electromagnetic simulations we address the prospects for achieving
slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap
based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear
in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages
including 8 figure
Direct comparison of methionine restriction with leucine restriction on the metabolic health of C57BL/6J mice
EKL was the recipient of a BBSRC postgraduate studentship. This work was funded by Tenovus Scotland project grant to MD and NM (G13/07) and BBSRC DTG. MD is also supported by the British Heart Foundation (PG/09/048/27675, PG/11/8/28703 and PG/14/43/30889) and Diabetes UK (14/0004853). NM is funded by British Heart Foundation (PG/16/90/32518).Peer reviewedPublisher PD
Characterization of the Megalopal Premoult Stages of the Green Crab, Carcinus Maenas (Decapoda, Portunidae), from Laboratory Culture
The premoult stages of Carcinus maenas (L.) megalopae were described from laboratory-reared larvae. Characterization of the premoult stage sequence was based upon a time sequence of morphological modifications of the distal segment of the second maxilliped, the uropod, and the telson. An intermoult plus seven premoult stages were identified, following a sequence of morphological modifications similar to the one described in previous studies of brachyuran decapods. The later premoult stages
D3
D3
and
D4
D4
mentioned by Drach were not observed, possibly owing to both the low calcification of the megalopae cuticle and the short duration of these moult stages. The knowledge of the time series of moult events will assist in the evaluation of the development state and competence of megalopae throughout the several phases of dispersal and recruitment, based on the observation of their morphological characters
Actin Cytoskeleton Regulation by the Yeast NADPH Oxidase Yno1p Impacts Processes Controlled by MAPK Pathways
Reactive oxygen species (ROS) that exceed the antioxidative capacity of the cell can be harmful and are termed oxidative stress. Increasing evidence suggests that ROS are not exclusively detrimental, but can fulfill important signaling functions. Recently, we have been able to demonstrate that a NADPH oxidase-like enzyme (termed Yno1p) exists in the single-celled organism Saccharomyces cerevisiae. This enzyme resides in the peripheral and perinuclear endoplasmic reticulum and functions in close proximity to the plasma membrane. Its product, hydrogen peroxide, which is also produced by the action of the superoxide dismutase, Sod1p, influences signaling of key regulatory proteins Ras2p and Yck1p/2p. In the present work, we demonstrate that Yno1p-derived H2O2 regulates outputs controlled by three MAP kinase pathways that can share components: the filamentous growth (filamentous growth MAPK (fMAPK)), pheromone response, and osmotic stress response (hyperosmolarity glycerol response, HOG) pathways. A key structural component and regulator in this process is the actin cytoskeleton. The nucleation and stabilization of actin are regulated by Yno1p. Cells lacking YNO1 showed reduced invasive growth, which could be reversed by stimulation of actin nucleation. Additionally, under osmotic stress, the vacuoles of a ∆yno1 strain show an enhanced fragmentation. During pheromone response induced by the addition of alpha-factor, Yno1p is responsible for a burst of ROS. Collectively, these results broaden the roles of ROS to encompass microbial differentiation responses and stress responses controlled by MAPK pathway
- …