14 research outputs found

    Solution structure of a purine rich hexaloop hairpin belonging to PGY/MDR1 mRNA and targeted by antisense oligonucleotides

    Get PDF
    A preferential target of antisense oligonucleotides directed against human PGY/MDR1 mRNA is a hairpin containing a stem with a G•U wobble pair, capped by the purine-rich (5′)r(GGGAUG)(3′) hexaloop. This hairpin is studied by multidimensional NMR and restrained molecular dynamics, with special emphasis on the conformation of south sugars and non-standard phosphate linkages evidenced in both the stem and the loop. The hairpin is found to be highly structured. The G•U wobble pair, a strong counterion binding site, displays structural particularities that are characteristic of this type of mismatch. The upper part of the stem undergoes distortions that optimize its interactions with the beginning of the loop. The loop adopts a new fold in which the single-stranded GGGA purine tract is structured in A-like conformation stacked in continuity of the stem and displays an extensive hydrogen bonding surface for recognition. The remarkable hairpin stability results from classical inter- and intra-strand interactions reinforced by numerous hydrogen bonds involving unusual backbone conformations and ribose 2′-hydroxyl groups. Overall, this work emphasizes numerous features that account for the well-ordered structure of the whole hairpin and highlights the loop properties that facilitate interaction with antisense oligonucleotides

    Solution structure of a non-palindromic 16 base-pair DNA related to the HIV-1 kappa B site: evidence for BI-BII equilibrium inducing a global dynamic curvature of the duplex.

    No full text
    International audience1H and 31P NMR spectroscopy have been used together with molecular modelling to determine the fine structure of a non-palindromic 16 bp DNA containing the NF-kappa B binding site. Much emphasis has been placed upon NMR optimization of both two-dimensional 31P NMR techniques to extract structural information defining the phosphodiester backbone conformation and selective homonuclear 2D COSY experiments to determine sugar conformations. NMR data show evidence for a dynamic behaviour of steps flanking the ten base-pairs of the NF-kappa B binding site. A BI-BII equilibrium at these steps is demonstrated and two models for each extreme conformation are proposed in agreement with NMR data. In the refined BII structures, the NF-kappa B binding site exhibits an intrinsic curvature towards the major groove that is magnified by the four flanking steps in the BII conformation. Furthermore, the base-pairs are translated into the major groove. Thus, we present a novel mode of dynamic intrinsic curvature compatible with the DNA curvature observed in the X-ray structure of the p50-DNA complex

    Current Awareness

    No full text
    International audienceIn order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted

    Solution conformation of an RNA–DNA hybrid duplex containing a pyrimidine RNA strand and a purine DNA strand

    No full text
    International audienceRNA–DNA hybrid duplexes are involved in transcription, replication and reverse transcription of nucleic acids. Informationon such duplexes may shed some light on the mechanism of these processes. For this purpose, the influence of base compositionon the structure of a polypyrimidine–polypurine RNA–DNA duplex r(cucuccuucucuu). d(GAGAGGAAGAGAA) has beenstudied using 1H, 31P and 13C NMR experiments, molecular modeling (JUMNA program) and NOE back-calculation methods.The resulting structure of the 13-mer hybrid duplex shows that the RNA strand is in the expected A-type conformation while theDNA strand is in a very flexible conformation. In the DNA strand, the desoxyribose sugars retain the C2%-endo B-typeconformation. The duplex helical parameters (such as inclination, twist and displacement of the bases) are close to the A-typeconformation. No bending was observed for the global axis curvature. The major groove width is close to the B-form value andthe minor groove width is intermediate between standard values for A and B-forms. These results are in favour of theindependence of minor groove size (where RNase H interacts) and the base composition of the hybrid duplexes. © 2001 ElsevierScience B.V. All rights reserved

    Current Awareness

    No full text
    International audienceIn order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted

    Nuclear magnetic resonance-based serum metabolomic analysis reveals different disease evolution profiles between septic shock survivors and non-survivors

    Get PDF
    International audienceBackground: Septic shock is the most severe phase of sepsis and is associated with high rates of mortality. However, early stage prediction of septic shock outcomes remains difficult. Metabolomic techniques have emerged as a promising tool for improving prognosis.MethodsOrthogonal projections to latent structures-discriminant analysis (OPLS-DA) models separating the serum metabolomes of survivors from those of non-survivors were established with samples obtained at the intensive care unit (ICU) admission (H0) and 24 h later (H24). For 51 patients with available H0 and H24 samples, multi-level modeling was performed to provide insight into different metabolic evolutions that occurred between H0 and H24 in the surviving and non-surviving patients. Relative quantification and receiver operational characteristic curves (ROC) were applied to estimate the predictability of key discriminatory metabolites for septic shock mortality.Results:Metabolites that were involved in energy supply and protein breakdown were primarily responsible for differentiating survivors from non-survivors. This was not only seen in the H0 and H24 discriminatory models, but also in the H0-H24 paired models. Reanalysis of extra H0-H24 paired samples in the established multi-level model demonstrated good performance of the model for the classification of samplings. According to the ROC results, nine discriminatory metabolites defined consistently from the unpaired model and the H0-H24 time-trend change (ΔH24-H0) show good prediction of mortality. These results suggest that NMR-based metabolomic analysis is useful for a better overall assessment of septic shock patients.Conclusions: Dysregulation of the metabolites identified by this study is associated with poor outcomes for septic shock. Evaluation of these compounds during the first 24 h after ICU admission in the septic shock patient may be helpful for estimating the severity of cases and for predicting outcomes
    corecore