76 research outputs found

    The Effect of Galaxy Interactions on Molecular Gas Properties

    Get PDF
    © 2018. The American Astronomical Society. All rights reserved.Galaxy interactions are often accompanied by an enhanced star formation rate (SFR). Since molecular gas is essential for star formation, it is vital to establish whether and by how much galaxy interactions affect the molecular gas properties. We investigate the effect of interactions on global molecular gas properties by studying a sample of 58 galaxies in pairs and 154 control galaxies. Molecular gas properties are determined from observations with the JCMT, PMO, and CSO telescopes and supplemented with data from the xCOLD GASS and JINGLE surveys at 12CO(1-0) and 12CO(2-1). The SFR, gas mass (), and gas fraction (f gas) are all enhanced in galaxies in pairs by ∌2.5 times compared to the controls matched in redshift, mass, and effective radius, while the enhancement of star formation efficiency (SFE ≡SFR/) is less than a factor of 2. We also find that the enhancements in SFR, and f gas, increase with decreasing pair separation and are larger in systems with smaller stellar mass ratio. Conversely, the SFE is only enhanced in close pairs (separation <20 kpc) and equal-mass systems; therefore, most galaxies in pairs lie in the same parameter space on the SFR- plane as controls. This is the first time that the dependence of molecular gas properties on merger configurations is probed statistically with a relatively large sample and a carefully selected control sample for individual galaxies. We conclude that galaxy interactions do modify the molecular gas properties, although the strength of the effect is dependent on merger configuration.Peer reviewedFinal Accepted Versio

    ReCoil - an algorithm for compression of extremely large datasets of dna data

    Get PDF
    The growing volume of generated DNA sequencing data makes the problem of its long term storage increasingly important. In this work we present ReCoil - an I/O efficient external memory algorithm designed for compression of very large collections of short reads DNA data. Typically each position of DNA sequence is covered by multiple reads of a short read dataset and our algorithm makes use of resulting redundancy to achieve high compression rate

    Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning

    Full text link
    OBJECTIVE Complex phenotypes captured on histological slides represent the biological processes at play in individual cancers, but the link to underlying molecular classification has not been clarified or systematised. In colorectal cancer (CRC), histological grading is a poor predictor of disease progression, and consensus molecular subtypes (CMSs) cannot be distinguished without gene expression profiling. We hypothesise that image analysis is a cost-effective tool to associate complex features of tissue organisation with molecular and outcome data and to resolve unclassifiable or heterogeneous cases. In this study, we present an image-based approach to predict CRC CMS from standard H&E sections using deep learning. DESIGN Training and evaluation of a neural network were performed using a total of n=1206 tissue sections with comprehensive multi-omic data from three independent datasets (training on FOCUS trial, n=278 patients; test on rectal cancer biopsies, GRAMPIAN cohort, n=144 patients; and The Cancer Genome Atlas (TCGA), n=430 patients). Ground truth CMS calls were ascertained by matching random forest and single sample predictions from CMS classifier. RESULTS Image-based CMS (imCMS) accurately classified slides in unseen datasets from TCGA (n=431 slides, AUC)=0.84) and rectal cancer biopsies (n=265 slides, AUC=0.85). imCMS spatially resolved intratumoural heterogeneity and provided secondary calls correlating with bioinformatic prediction from molecular data. imCMS classified samples previously unclassifiable by RNA expression profiling, reproduced the expected correlations with genomic and epigenetic alterations and showed similar prognostic associations as transcriptomic CMS. CONCLUSION This study shows that a prediction of RNA expression classifiers can be made from H&E images, opening the door to simple, cheap and reliable biological stratification within routine workflows

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Playing Games with Tito:Designing Hybrid Museum Experiences for Critical Play

    Get PDF
    This article brings together two distinct, but related perspectives on playful museum experiences: Critical play and hybrid design. The article explores the challenges involved in combining these two perspectives, through the design of two hybrid museum experiences that aimed to facilitate critical play with/in the collections of the Museum of Yugoslavia and the highly contested heritage they represent. Based on reflections from the design process as well as feedback from test users, we describe a series of challenges: Challenging the norms of visitor behaviour, challenging the role of the artefact, and challenging the curatorial authority. In conclusion, we outline some possible design strategies to address these challenges
    • 

    corecore