79 research outputs found

    Near-identical star formation rate densities from Hα and FUV at redshift zero

    Get PDF
    For the first time both Hα\alpha and far-ultraviolet (FUV) observations from an HI-selected sample are used to determine the dust-corrected star formation rate density (SFRD: ρ˙\dot{\rho}) in the local Universe. Applying the two star formation rate indicators on 294 local galaxies we determine log(ρ˙\dot{\rho}Hα)=1.68 0.05+0.13 _{H\alpha}) = -1.68~^{+0.13}_{-0.05} [M_{\odot} yr1^{-1} Mpc3]^{-3}] and log(ρ˙FUV\dot{\rho}_{FUV}) =1.71 0.13+0.12 = -1.71~^{+0.12}_{-0.13} [M_\odot yr1^{-1} Mpc3]^{-3}]. These values are derived from scaling Hα\alpha and FUV observations to the HI mass function. Galaxies were selected to uniformly sample the full HI mass (MHI_{HI}) range of the HI Parkes All-Sky Survey (MHI107_{HI} \sim10^{7} to 1010.7\sim10^{10.7} M_{\odot}). The approach leads to relatively larger sampling of dwarf galaxies compared to optically-selected surveys. The low HI mass, low luminosity and low surface brightness galaxy populations have, on average, lower Hα\alpha/FUV flux ratios than the remaining galaxy populations, consistent with the earlier results of Meurer. The near-identical Hα\alpha- and FUV-derived SFRD values arise with the low Hα\alpha/FUV flux ratios of some galaxies being offset by enhanced Hα\alpha from the brightest and high mass galaxy populations. Our findings confirm the necessity to fully sample the HI mass range for a complete census of local star formation to include lower stellar mass galaxies which dominate the local Universe.Partial funding for the SINGG and SUNGG surveys came from NASA grants NAG5-13083 (LTSA program), GALEX GI04- 0105-0009 (NASA GALEX Guest Investigator grant) and NNX09AF85G (GALEX archival grant) to G.R. Meurer. FAR acknowledges partial funding from the Department of Physics, University of Western Australia. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

    Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy

    Get PDF
    addresses: School of Biosciences, University of Exeter, Exeter EX4 5DE, UK. [email protected]: PMCID: PMC2777180types: Journal Article; Research Support, Non-U.S. Gov't© 2009 Yang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Tyrosine sulfation is one of the most important posttranslational modifications. Due to its relevance to various disease developments, tyrosine sulfation has become the target for drug design. In order to facilitate efficient drug design, accurate prediction of sulfotyrosine sites is desirable. A predictor published seven years ago has been very successful with claimed prediction accuracy of 98%. However, it has a particularly low sensitivity when predicting sulfotyrosine sites in some newly sequenced proteins

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    Tests of Lorentz invariance at the Sudbury Neutrino Observatory

    Get PDF
    Experimental tests of Lorentz symmetry in systems of all types are critical for ensuring that the basic assumptions of physics are well-founded. Data from all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in the neutrino sector. Such violations would appear as one of eight possible signal types in the detector: six seasonal variations in the solar electron neutrino survival probability differing in energy and time dependence, and two shape changes to the oscillated solar neutrino energy spectrum. No evidence for such signals is observed, and limits on the size of such effects are established in the framework of the Standard Model Extension, including 40 limits on perviously unconstrained operators and improved limits on 15 additional operators. This makes limits on all minimal, Dirac-type Lorentz violating operators in the neutrino sector available for the first time

    Search for hep solar neutrinos and the diffuse supernova neutrino background using all three phases of the Sudbury Neutrino Observatory

    Get PDF
    A search has been performed for neutrinos from two sources, the hep reaction in the solar pp fusion chain and the νe component of the diffuse supernova neutrino background (DSNB), using the full dataset of the Sudbury Neutrino Observatory with a total exposure of 2.47 kton-years after fiducialization. The hep search is performed using both a single-bin counting analysis and a likelihood fit. We find a best-fit flux that is compatible with solar model predictions while remaining consistent with zero flux, and set a one-sided upper limit of φhep<30×103 cm-2 s-1 [90% credible interval (CI)]. No events are observed in the DSNB search region, and we set an improved upper bound on the νe component of the DSNB flux of φνeDSNB<19 cm-2 s-1 (90% CI) in the energy range 22.9<Eν<36.9 MeV
    corecore