27 research outputs found

    Long-term summer temperature variations in the Pyrenees

    Get PDF
    Two hundred and sixty one newly measured tree-ring width and density series from living and dry-dead conifers from two timberline sites in the Spanish Pyrenees were compiled. Application of the regional curve standardization method for tree-ring detrending allowed the preservation of inter-annual to multi-centennial scale variability. The new density record correlates at 0.53 (0.68 in the higher frequency domain) with May-September maximum temperatures over the 1944-2005 period. Reconstructed warmth in the fourteenth to fifteenth and twentieth century is separated by a prolonged cooling from ∼1450 to 1850. Six of the ten warmest decades fall into the twentieth century, whereas the remaining four are reconstructed for the 1360-1440 interval. Comparison with novel density-based summer temperature reconstructions from the Swiss Alps and northern Sweden indicates decadal to longer-term similarity between the Pyrenees and Alps, but disagreement with northern Sweden. Spatial field correlations with instrumental data support the regional differentiation of the proxy records. While twentieth century warmth is evident in the Alps and Pyrenees, recent temperatures in Scandinavia are relatively cold in comparison to earlier warmth centered around medieval times, ∼1450, and the late eighteenth century. While coldest summers in the Alps and Pyrenees were in-phase with the Maunder and Dalton solar minima, lowest temperatures in Scandinavia occurred later at the onset of the twentieth century. However, fairly cold summers at the end of the fifteenth century, between ∼1600-1700, and ∼1820 were synchronized over Europe, and larger areas of the Northern Hemispher

    Aged but withstanding: Maintenance of growth rates in old pines is not related to enhanced water-use efficiency

    Get PDF
    Growth of old trees in cold-limited forests may benefit from recent climate warming and rising atmospheric CO2 concentrations (ca) if age-related constraints do not impair wood formation. To test this hypothesis, we studied old Mountain pine trees at three Pyrenean high-elevation forests subjected to cold-wet (ORD, AIG) or warmer-drier (PED) conditions. We analyzed long-term trends (1450–2008) in growth (BAI, basal area increment), maximum (MXD) and minimum (MID) wood density, and tree-ring carbon (δ13C) and oxygen (δ18O) isotope composition, which were used as proxies for intrinsic water-use efficiency (iWUE) and stomatal conductance (gs), respectively. Old pines showed positive (AIG and ORD) or stable (PED) growth trends during the industrial period (since 1850) despite being older than 400 years. Growth and wood density covaried from 1850 onwards. In the cold-wet sites (AIG and ORD) enhanced photosynthesis through rising ca was likely responsible for the post-1850 iWUE improvement. However, uncoupling between BAI and iWUE indicated that increases in iWUE were not responsible for the higher growth but climate warming. A reduction in gs was inferred from increased δ18O for PED trees from 1960 onwards, the warmest site where the highest iWUE increase occurred (34%). This suggests that an emergent drought stress at warm-dry sites could trigger stomatal closure to avoid excessive transpiration. Overall, carbon acquisition as lasting woody pools is expected to be maintained in aged trees from cold and high-elevation sites where old forests constitute unique long-term carbon reservoirs.We are very grateful to several projects financed by “Organismo Autónomo de Parques Nacionales” (projects 12/2008 387/2011). E.G. was funded by a Juan de la Cierva post-doctoral research contract (FJCI-2014-19615, MEC, Spain). Spanish (AMB95-0160, CGL2011-26654) and EU projects ISONET (contract EV K2-2001-00237) and MILLENNIUM (017008–2) also supported this study by contributing additional datasets

    Cloud Cover Feedback Moderates Fennoscandian Summer Temperature Changes Over the Past 1,000 Years

    Get PDF
    Northern Fennoscandia has experienced little summer warming over recent decades, in 24 contrast to the hemispheric trend, which is strongly linked to greenhouse gas emissions. A likely25 explanation is the feedback between cloud cover and temperature. We establish the long- and26 short-term relationship between summer cloud cover and temperature over Northern27 Fennoscandia, by analysing meteorological and proxy climate data. We identify opposing28 feedbacks operating at different timescales. At short timescales, dominated by internal29 variability, the cloud cover-temperature feedback is negative; summers with increased cloud30 cover are cooler and sunny summers are warmer. However, over longer timescales, at which31 forced climate changes operate, this feedback is positive, rising temperatures causing increased32 regional cloud cover and vice versa. This has occurred both during warm (Medieval Climate33 Anomaly and at present) and cool (Little Ice Age) periods. This two-way feedback relationship34 therefore moderates Northern Fennoscandian temperatures during both warm and cool35 hemispheric periods

    Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE

    Get PDF
    This study was funded by the WSL-internal COSMIC project (5233.00148.001.01), the ETHZ (Laboratory of Ion Beam Physics), the Swiss National Science Foundation (SNF Grant 200021L_157187/1), and as the Czech Republic Grant Agency project no. 17-22102s.Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770–780 and 990–1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.Publisher PDFPeer reviewe

    Tree Rings as Sensitive Proxies of Past Climate Change

    No full text
    In the boreal forests of the Northern Hemisphere, time series of tree-ring width (TRW) and maximum density in the latewood (MXD) are highly correlated to local instrumental summer-temperature data and are thus widely used as proxies in high-resolution climate reconstructions. Hence, much of our present knowledge about climatic variability in the last millennium is based on tree-rings. However, many tree-ring records have a lack of data in the most recent decades, which severely hampers our ability to place the recent temperature increase in a longer-timescale perspective of natural variability. The main objective of this thesis is to update and extend the Torneträsk TRW and MXD records in northern Sweden. Local instrumental climate-data is used to calibrate the new tree-ring records. The results show that TRW is mainly forced by temperature in the early growing season (June/July) while MXD has a wider response window (June – August) and has a higher correlation to temperature. Two reconstructions of summer temperature are made for (i) the last 7,400 years based on TRW, and (ii) the last 1,500 years based on a combination of TRW and MXD. The reconstructions show natural variability on timescales from years to several centuries. The 20th century does not stand out as a notably warm period in the long timescale perspective. A medieval period from AD 900 – 1100 is markedly warmer than the 20th century. The environmental impact from a large explosive volcanic eruption in 1628/1627 BC is analysed in the tree rings of 14C-dated bog pines in south-central Sweden and in absolutely-dated subfossil pines from Torneträsk. The results show evidence of an impact in the southern site at approximately this time but no detectable impact in the North. Subfossil trees of Fitzroya cupressoides in southern Chile were 14C-dated to approx. 50,000 years BP and amalgamated into a 1,229-year TRW chronology. This tree-ring record is the oldest in the world. The variability in this Last-glacial chronology is similar to the variability in present-day living trees of the same species. These results suggest that the growth–forcing mechanisms 50,000 years ago were similar to those at present

    Torneträsk Tree Ring MXD Temperature Reconstruction AD 500-2004

    No full text
    A temperature reconstruction for the period AD 500-2004 based on tree-ring maximum density (MXD) at Tornetrask in northern Swede

    Dendroclimatology in Fennoscandia – from past accomplishments to future potential

    Get PDF
    Fennoscandia has a strong tradition in dendrochronology, and its large tracts of boreal forest make the region well suited for the development of tree-ring chronologies that extend back several thousands of years. Two of the world's longest continuous (most tree-ring chronologies are annually resolved) tree-ring width chronologies are found in northern Fennoscandia, with records from Torneträsk and Finnish Lapland covering the last ca. 7500 yr. In addition, several chronologies between coastal Norway and the interior of Finland extend back several centuries. Tree-ring data from Fennoscandia have provided important information on regional climate variability during the mid to late Holocene and have played major roles in the reconstruction of hemispheric and global temperatures. Tree-ring data from the region have also been used to reconstruct large-scale atmospheric circulation patterns, regional precipitation and drought. Such information is imperative when trying to reach better understanding of natural climate change and variability and its forcing mechanisms, and placing recent climate change within a long-term context

    Re-processing 1500 years of Torneträsk density and ring-width data

    No full text
    The analysis of existing and new maximum-latewood-density (MXD) and tree-ring width (TRW) data from the Torneträsk region of northern Sweden and the construction of 1500 year chronologies
    corecore