86 research outputs found

    United States Military Fatalities During Operation Inherent Resolve and Operation Freedom\u27s Sentinel.

    Get PDF
    BACKGROUND: Military operations provide a unified action and strategic approach to achieve national goals and objectives. Mortality reviews from military operations can guide injury prevention and casualty care efforts. METHODS: A retrospective study was conducted on all U.S. military fatalities from Operation Inherent Resolve (OIR) in Iraq (2014-2021) and Operation Freedom\u27s Sentinel (OFS) in Afghanistan (2015-2021). Data were obtained from autopsy reports and other existing records. Fatalities were evaluated for population characteristics; manner, cause, and location of death; and underlying atherosclerosis. Non-suicide trauma fatalities were also evaluated for injury severity, mechanism of death, injury survivability, death preventability, and opportunities for improvement. RESULTS: Of 213 U.S. military fatalities (median age, 29 years; male, 93.0%; prehospital, 89.2%), 49.8% were from OIR, and 50.2% were from OFS. More OIR fatalities were Reserve and National Guard forces (OIR 22.6%; OFS 5.6%), conventional forces (OIR 82.1%; OFS 65.4%), and support personnel (OIR 61.3%; OFS 33.6%). More OIR fatalities also resulted from disease and non-battle injury (OIR 83.0%; OFS 28.0%). The leading cause of death was injury (OIR 81.1%; OFS 98.1%). Manner of death differed as more homicides (OIR 18.9%; OFS 72.9%) were seen in OFS, and more deaths from natural causes (OIR 18.9%; OFS 1.9%) and suicides (OIR 29.2%; OFS 6.5%) were seen in OIR. The prevalence of underlying atherosclerosis was 14.2% in OIR and 18.7% in OFS. Of 146 non-suicide trauma fatalities, most multiple/blunt force injury deaths (62.2%) occurred in OIR, and most blast injury deaths (77.8%) and gunshot wound deaths (76.6%) occurred in OFS. The leading mechanism of death was catastrophic tissue destruction (80.8%). Most fatalities had non-survivable injuries (80.8%) and non-preventable deaths (97.3%). CONCLUSIONS: Comprehensive mortality reviews should routinely be conducted for all military operation deaths. Understanding death from both injury and disease can guide preemptive and responsive efforts to reduce death among military forces

    Does nitrogen affect the interaction between a native hemiparasite and its native or introduced leguminous hosts?

    Get PDF
    © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust Associations between plants and nitrogen (N)-fixing rhizobia intensify with decreasing N supply and come at a carbon cost to the host. However, what additional impact parasitic plants have on their leguminous hosts’ carbon budget in terms of effects on host physiology and growth is unknown. Under glasshouse conditions, Ulex europaeus and Acacia paradoxa either uninfected or infected with the hemiparasite Cassytha pubescens were supplied (high nitrogen (HN)) or not (low nitrogen (LN)) with extra N. The photosynthetic performance and growth of the association were measured. Cassytha pubescens significantly reduced the maximum electron transport rates and total biomass of U. europaeus but not those of A. paradoxa, regardless of N. Infection significantly decreased the root biomass of A. paradoxa only at LN, while the significant negative effect of infection on roots of U. europaeus was less severe at LN. Infection had a significant negative impact on host nodule biomass. Ulex europaeus supported significantly greater parasite biomass (also per unit host biomass) than A. paradoxa, regardless of N. We concluded that rhizobia do not influence the effect of a native parasite on overall growth of leguminous hosts. Our results suggest that C. pubescens will have a strong impact on U. europaeus but not A. paradoxa, regardless of N in the field

    A native parasitic plant affects the performance of an introduced host regardless of environmental variation across field sites

    Get PDF
    Increasing evidence from glasshouse studies shows that native hemiparasitic plants can significantly impact the performance and growth of introduced host plants. We investigated the effect of the native Australian hemiparasite Cassytha pubescens R.Br. on the introduced shrub Ulex europaeus L. at three field sites in South Australia. Parasite infection significantly decreased midday PSII efficiency (ΦPSII) and the maximum electron transport rates (ETRmax) of U. europaeus across sites. The impact of C. pubescens on the photosynthetic performance of U. europaeus may have been caused by infected plants having significantly lower N and K, but higher Fe and Al than uninfected plants at all sites. Significant Al and Fe enrichment in infected plants may be possibly due to the parasite indirectly inducing rhizosphere acidification. At two sites, C. pubescens significantly affected host Fv/Fm, indicating chronic photoinhibition in response to infection. The impact of infection on Fv/Fmwas greatest at the wettest site, in line with an experiment where C. pubescens had more impact under high water availability. At this site, infected plants also had the highest foliar Fe and Al. The C isotope (δ13C) of infected plants was significantly lower than that of uninfected plants at only one site. Unusually, the δ13C of the parasite was the same as or significantly higher than that of the hosts. There were no site effects on parasite Fv/Fmor ΦPSII; however, ETRmaxand δ13C varied across sites. The results suggest that this native parasite has negative effects on U. europaeus in the field, as was found for glasshouse studies. The abundance of this introduced weed in Australia could be negatively affected by C. pubescens infection

    Research priorities for the sustainability of coral-rich western Pacific seascapes

    Get PDF
    Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 (‘Life below Water’) of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia–Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds

    Impact of HIV on Cell Survival and Antiviral Activity of Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are important mediators of innate immunity that act mainly through secretion of interferon (IFN)-α. Previous studies have found that these cells can suppress HIV in vitro; additionally, pDCs have been shown to be severely reduced in the peripheral blood of HIV-infected individuals. In the present study, we sought to determine the ability of pDCs to directly suppress viral replication ex vivo and to delineate the potential mechanisms whereby pDCs are depleted in HIV-infected individuals. We demonstrate that activated pDCs strongly suppress HIV replication in autologous CD4(+) T cells via a mechanism involving IFN-α as well as other antiviral factors. Of note, unstimulated pDCs from infected individuals who maintain low levels of plasma viremia without antiretroviral therapy were able to suppress HIV ex vivo via a mechanism requiring cell-to-cell contact. Our data also demonstrate that death of pDCs by both apoptosis and necrosis is induced by fusion of HIV with pDCs. Taken together, our data suggest that pDCs play an important role in the control of HIV replication and that high levels of viral replication in vivo are associated with pDC cell death via apoptosis and necrosis. Elucidation of the mechanism by which pDCs suppress HIV replication in vivo may have clinically relevant implications for future therapeutic strategies

    Empowerment and Parent Gain as Mediators and Moderators of Distress in Mothers of Children with Autism Spectrum Disorders

    Get PDF
    Mothers of children with Autism Spectrum Disorders (ASD) experience considerable amounts of distress and experiences of crisis. The Family Adjustment and Adaptation Response model provides a theory for understanding the experience of distress and family crisis in families, and the purpose of the present study was to examine experiences of distress in mothers of individuals with ASD using this framework. We specifically investigated how parent empowerment and positive gain are related to their experiences of distress, whether as mediators or as moderators of child aggression. Participants included 156 mothers of children with ASD ranging in age from 4 – 21 years. Mothers completed an online survey of demographics, problem behaviors, family empowerment, positive gain, and distress. We conducted path analyses of multiple mediation and moderation. Results indicated that greater child problem behavior was related to less parent empowerment, which was related to greater maternal distress, supporting empowerment as a partial mediator. At the same time, greater child aggression was not related to maternal distress in mothers who report high rates of positive gain, suggesting that parent gain functions as a moderator. The implications for how and when clinicians intervene with families of children with ASD are discussed

    Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT

    Get PDF
    Assessment of disease burden and drug efficacy is achieved preclinically using high resolution micro computed tomography (CT). However, micro-CT is not applicable to clinical human imaging due to operating at high dose. In addition, the technology differences between micro-CT and standard clinical CT prevent direct translation of preclinical applications. The current proof-of-concept study presents spectral photon-counting CT as a clinically translatable, molecular imaging tool by assessing contrast uptake in an ex-vivo mouse model of pulmonary tuberculosis (TB). Iodine, a common contrast used in clinical CT imaging, was introduced into a murine model of TB. The excised mouse lungs were imaged using a standard micro-CT subsystem (SuperArgus) and the contrast enhanced TB lesions quantified. The same lungs were imaged using a spectral photoncounting CT system (MARS small-bore scanner). Iodine and soft tissues (water and lipid) were materially separated, and iodine uptake quantified. The volume of the TB infection quantified by spectral CT and micro-CT was found to be 2.96 mm(3) and 2.83 mm(3), respectively. This proof-of-concept study showed that spectral photon-counting CT could be used as a predictive preclinical imaging tool for the purpose of facilitating drug discovery and development. Also, as this imaging modality is available for human trials, all applications are translatable to human imaging. In conclusion, spectral photon-counting CT could accelerate a deeper understanding of infectious lung diseases using targeted pharmaceuticals and intrinsic markers, and ultimately improve the efficacy of therapies by measuring drug delivery and response to treatment in animal models and later in humans

    Evaluating the use of testate amoeba for palaeohydrological reconstruction in permafrost peatlands

    Get PDF
    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a new testate amoeba-based water table transfer function and thoroughly test it for the effects of spatial autocorrelation, clustered sampling design and uneven sampling gradients. We find that the transfer function has good predictive power; the best-performing model is based on tolerance-downweighted weighted averaging with inverse deshrinking (performance statistics with leave-one-out cross validation: R2 = 0.87, RMSEP = 5.25 cm). The new transfer function was applied to a short core from Stordalen mire, and reveals a major shift in peatland ecohydrology coincident with the onset of the Little Ice Age (c. AD 1400). We also applied the model to an independent contemporary dataset from Stordalen and find that it outperforms predictions based on other published transfer functions. The new transfer function will enable palaeohydrological reconstruction from permafrost peatlands in Northern Europe, thereby permitting greatly improved understanding of the long-term ecohydrological dynamics of these important carbon stores as well as their responses to recent climate change
    corecore