1,228 research outputs found

    Bacterial microbiota associated with Rhipicephalus sanguineus (s.l.) ticks from France, Senegal and Arizona

    Get PDF
    Background: Ticks of the group Rhipicephalus sanguineus (sensu lato) are distributed worldwide and are major pathogen vectors of both dogs and humans. Previous phylogenetic reconstructions have suggested the existence of two main lineages within this group, "Tropical" and "Temperate". Symbiotic interactions contribute to vector development, survival, reproduction and competence. The diversity of microbial communities associated with different populations of R. sanguineus (s.l.) remains poorly characterized, however, this knowledge will aid in future studies of hosts-microbiota-pathogen interactions. To gain insight into the bacterial communities associated with R. sanguineus (s.l.) ticks, 40 specimens from France, Senegal and Arizona were analyzed by high-throughput 16S amplicon sequencing. All tick specimens were taxonomically classified using the mitochondrial 12S rDNA gene, which provides sufficient phylogenetic resolution to discriminate different lineages of R. sanguineus. Results: Rhipicephalus sanguineus (s.l.) samples from Senegal belonged to the "Tropical" lineage, samples from France belonged to the "Temperate" lineage, whereas both lineages were identified in samples from Arizona. Regardless of origin, each bacterial microbiota was dominated by three genera: Coxiella, Rickettsia and Bacillus. Rickettsia and Coxiella were the two main genera found in females whereas males had a higher proportion of Bacillus. Significant differences of relative abundances were evidenced between specimens from different geographical origins. Conclusions: This study highlights differences in the microbiota composition within R. sanguineus (s.l.) specimens from different genotypes, genders and geographical origins. This knowledge will help in future studies of the symbiotic interactions, biology and vector competence of the R. sanguineus (s.l.) complex.Peer reviewe

    The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    Get PDF
    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observation

    TOI-1452 b: SPIRou and TESS Reveal a Super-Earth in a Temperate Orbit Transiting an M4 Dwarf

    Get PDF
    Exploring the properties of exoplanets near or inside the radius valley provides insight on the transition from the rocky super-Earths to the larger, hydrogen-rich atmosphere mini-Neptunes. Here, we report the discovery of TOI-1452b, a transiting super-Earth (R-p = 1.67 +/- 0.07 R-circle times) in an 11.1 day temperate orbit (T-eq = 326 +/- 7 K) around the primary member (H = 10.0, T-eff = 3185 +/- 50 K) of a nearby visual-binary M dwarf. The transits were first detected by the Transiting Exoplanet Survey Satellite, then successfully isolated between the two 3.'' 2 companions with ground-based photometry from the Observatoire du Mont-Megantic and MuSCAT3. The planetary nature of TOI-1452b was established through high-precision velocimetry with the near-infrared SPTRou spectropolarimeter as part of the ongoing SPIRou Legacy Survey. The measured planetary mass (4.8 +/- 1.3 M-circle times) and inferred bulk density (5.6(-)(1.)(6)(+1.8) g cm(-3)) is suggestive of a rocky core surrounded by a volatile-rich envelope. More quantitatively, the mass and radius of TOI-1452b, combined with the stellar abundance of refractory elements (Fe, Mg, and Si) measured by SPTRou, is consistent with a core-mass fraction of 18% +/- 6% and a water-mass fraction of 22(-13)(+21)%. The water world candidate TOI-14521) is a prime target for future atmospheric characterization with JWST, featuring a transmission spectroscopy metric similar to other well-known temperate small planets such as LHS 1140b and K2-18 b. The system is located near Webb's northern continuous viewing zone, implying that is can be followed at almost any moment of the year

    Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System

    Full text link
    Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10 000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.Comment: 8 pages, 10 figures, submitted to IJCNN 201

    The relation between clinically diagnosed and parent-reported feeding difficulties in children with and without clefts

    Get PDF
    A cleft lip and/or palate (CL/P) is one of the most common craniofacial malformations, occurring worldwide in about one in 600-1000 newborn infants. CL/P is known to influence the feeding process negatively, causing feeding difficulties in 25-73% of all children with CL/P. Because there is a risk for serious complications in these children regarding feeding difficulties, there is often a need for intensive medical counseling and treatment. At this moment, adequate diagnosis and measurement remain a challenge and often lead to a delayed referral for professional help. Since parents play a big part in reporting feeding difficulties, it is important to help objectify parents' experiences, as well as the use of a frontline screening instrument for routine check-ups during medical appointments. The aim of this study is to investigate the relationship between parent perspective and standardized observation by medical professionals on feeding difficulties in 60 children with and without clefts at the age of 17 months. We focus on the information from parents and health professionals by comparing the Observation List Spoon Feeding and the Schedule for Oral Motor Assessment with the validated Dutch translation of the Montreal Children's Hospital Feeding Scale. Conclusion: There is a need for timely and adequate diagnosis and referral when it comes to feeding difficulties in children with CL/P. This study underscores the importance of combining both parental observations and measurements of oral motor skills by healthcare professionals to enable this. What is Known: • Early identification of feeding difficulties can prevent adversely affected growth and development. • Clefts increase the probability of feeding difficulties; however, the diagnostic trajectory is unclear. • The Observation List Spoon Feeding (OSF) and Schedule for Oral Motor Assessment (SOMA) are validated to measure oral motor skills. The Montreal Children's Hospital Feeding Scale Dutch version (MCH-FSD) has been validated for the parental perception of infant feeding difficulties. What is New: • Parents of children with CL/P experience relatively few feeding problems in their child on average. • Oral motor skills for spoon feeding are associated with oral motor skills for solid foods in children with CL/P. • The extent of the cleft is associated with experiencing more feeding difficulties in children with CL/P.</p

    Quantifying TOLNet Ozone Lidar Accuracy During the 2014 DISCOVER-AQ and FRAPP Campaigns

    Get PDF
    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry xperiment (FRAPP) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than 15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than 5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts

    Outcomes of a new slowly resorbable biosynthetic mesh (Phasix (TM)) in potentially contaminated incisional hernias : a prospective, multi-center, single-arm trial

    Get PDF
    Background: Resorbable biomaterials have been developed to reduce the amount of foreign material remaining in the body after hernia repair over the long-term. However, on the short-term, these resorbable materials should render acceptable results with regard to complications, infections, and reoperations to be considered for repair. Additionally, the rate of resorption should not be any faster than collagen deposition and maturation; leading to early hernia recurrence. Therefore, the objective of this study was to collect data on the short-term performance of a new resorbable biosynthetic mesh (Phasix (TM)) in patients requiring Ventral Hernia Working Group (VHWG) Grade 3 midline incisional hernia repair. Materials and methods: A prospective, multi-center, single-arm trial was conducted at surgical departments in 15 hospitals across Europe. Patients aged >= 18, scheduled to undergo elective Ventral Hernia Working Group Grade 3 hernia repair of a hernia larger than 10 cm(2) were included. Hernia repair was performed with Phasix (TM) Mesh in sublay position when achievable. The primary outcome was the rate of surgical site occurrence (SSO), including infections, that required intervention until 3 months after repair. Results: In total, 84 patients were treated with Phasix (TM) Mesh. Twenty-two patients (26.2%) developed 32 surgical site occurrences. These included 11 surgical site infections, 9 wound dehiscences, 7 seromas, 2 hematomas, 2 skin necroses, and 1 fistula. No significant differences in surgical site occurrence development were found between groups repaired with or without component separation technique, and between clean-contaminated or contaminated wound sites. At three months, there were no hernia recurrences. Conclusion: Phasix (TM) Mesh demonstrated acceptable postoperative surgical site occurrence rates in patients with a Ventral Hernia Working Group Grade 3 hernia. Longer follow-up is needed to evaluate the recurrence rate and the effects on quality of life. This study is ongoing through 24 months of follow-up
    corecore