95 research outputs found

    Resonant self-pulsations in coupled nonlinear microcavities

    Full text link
    A novel point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of system with enhanced ability to this phenomenon. The specific design of such structure in the form of multilayered media is proposed, and the coupled mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.Comment: 5 pages, 4 figure

    Broadband transmission properties of multilayered structures

    Full text link
    The formalism of the scattering matrix is applied to describe the transmission properties of multilayered structures with deep variations of the refractive index and arbitrary arrangements of the layers. We show that there is an exact analytical formula for the transmission spectrum, which is valid for the full spectral range and which contains only a limited number of parameters for structures satisfying the quarter-wave condition. These parameters are related to the poles of the scattering matrix, and we present an efficient algorithm to find them, which is based on considering the ray propagation inside the structure and subsequent application of the harmonic inversion technique. These results are significant to analyze the reshaping of ultrashort pulses in multilayered structures.Comment: 3 pages, 3 figure

    Coupled mode theory for on-channel nonlinear microcavities

    Full text link
    We consider a nonlinear microcavity separating a waveguide channel into two parts so as the coupling between them is possible only due to the resonant properties of the microcavity. We provide a rigorous derivation of the equations used in the phenomenological coupled mode theory for such systems. This allows us to find the explicit formulas for all fitting parameters such as decay rates, coupling coefficients and characteristic intensities in terms of the mode profiles. The advantages of using the semi-analytical approach are discussed, and the accuracy of the results is compared with the strictly numerical methods. A particular attention is paid to multilayered structures since they represent the simplest realization of on-channel microcavities.Comment: 21 pages, 4 figure

    Nanophotonic enhancement of the F\"orster resonance energy transfer rate on single DNA molecules

    Full text link
    Nanophotonics achieves accurate control over the luminescence properties of a single quantum emitter by tailoring the light-matter interaction at the nanoscale and modifying the local density of optical states (LDOS). This paradigm could also benefit to F\"orster resonance energy transfer (FRET) by enhancing the near-field electromagnetic interaction between two fluorescent emitters. Despite the wide applications of FRET in nanosciences, using nanophotonics to enhance FRET remains a debated and complex challenge. Here, we demonstrate enhanced energy transfer within single donor-acceptor fluorophore pairs confined in gold nanoapertures. Experiments monitoring both the donor and the acceptor emission photodynamics at the single molecule level clearly establish a linear dependence of the FRET rate on the LDOS in nanoapertures. These findings are applied to enhance the FRET rate in nanoapertures up to six times, demonstrating that nanophotonics can be used to intensify the near-field energy transfer and improve the biophotonic applications of FRET

    Fluorescence energy transfer enhancement in aluminum nanoapertures

    Full text link
    Zero-mode waveguides (ZMWs) are confining light into attoliter volumes, enabling single molecule fluorescence experiments at physiological micromolar concentrations. Among the fluorescence spectroscopy techniques that can be enhanced by ZMWs, F\"{o}rster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentration with single molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor-acceptor fluorophore pairs diffusing in aluminum zero-mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large literature describing their use for single molecule fluorescence spectroscopy. We also compare the results between ZMWs milled in gold and aluminum, and find that while gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observe that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states (LDOS). Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single molecule FRET at physiological concentrations

    Plasmonic antennas and zero mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy towards physiological concentrations

    Full text link
    Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as F\"orster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero mode waveguides and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometre scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET and FCS. Single molecule spectroscopy techniques greatly benefit from zero mode waveguides and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics to biological problems with FRET and FCS is an emerging and exciting field, and is promising to reveal new insights on biological functions and dynamics.Comment: WIREs Nanomed Nanobiotechnol 201

    On Pure Spinor Superfield Formalism

    Full text link
    We show that a certain superfield formalism can be used to find an off-shell supersymmetric description for some supersymmetric field theories where conventional superfield formalism does not work. This "new" formalism contains even auxiliary variables in addition to conventional odd super-coordinates. The idea of this construction is similar to the pure spinor formalism developed by N.Berkovits. It is demonstrated that using this formalism it is possible to prove that the certain Chern-Simons-like (Witten's OSFT-like) theory can be considered as an off-shell version for some on-shell supersymmetric field theories. We use the simplest non-trivial model found in [2] to illustrate the power of this pure spinor superfield formalism. Then we redo all the calculations for the case of 10-dimensional Super-Yang-Mills theory. The construction of off-shell description for this theory is more subtle in comparison with the model of [2] and requires additional Z_2 projection. We discover experimentally (through a direct explicit calculation) a non-trivial Z_2 duality at the level of Feynman diagrams. The nature of this duality requires a better investigation

    Bistability, multistability and nonreciprocal light propagation in Thue-Morse multilayered structures

    Full text link
    The nonlinear properties of quasiperiodic photonic crystals based on the Thue-Morse sequence are investigated. The intrinsic spatial asymmetry of these one-dimensional structures for odd generation numbers results in bistability thresholds which are sensitive to the propagation direction. Along with resonances of perfect transmission, this feature allows to achieve strongly non-reciprocal propagation and to create an all-optical diode. The salient qualitative features of such optical diode action is readily explained through a simple coupled resonator model. The efficiency of a passive scheme, which does not necessitate of an additional short pump signal, is compared to an active scheme, where such a signal is required.Comment: 18 pages, 8 figure

    A Physical Model for the Condensation and Decondensation of Eukaryotic Chromosomes

    Get PDF
    During the eukaryotic cell cycle, chromatin undergoes several conformational changes, which are believed to play key roles in gene expression regulation during interphase, and in genome replication and division during mitosis. In this paper, we propose a scenario for chromatin structural reorganization during mitosis, which bridges all the different scales involved in chromatin architecture, from nucleosomes to chromatin loops. We build a model for chromatin, based on available data, taking into account both physical and topological constraints DNA has to deal with. Our results suggest that the mitotic chromosome condensation/decondensation process is induced by a structural change at the level of the nucleosome itself

    Concentrating Solar Thermal Technologies – Status, Cost and Research Trends

    Get PDF
    This article presents an overview of the status of CST technologies, their cost, and their future trends. The information regarding the trends in CST technologies is based on the informed opinion of the authors, many of which have decades of experience in the CST field in academia and industry. Thus, it does not pretend to be an exhaustive list of all lines of research and commercial innovations being explored around the world, but a summary of the lines of research that the institutions and groups that the authors belong to are explorin
    • …
    corecore