42 research outputs found

    Impact and cost-effectiveness of current and future tuberculosis diagnostics: the contribution of modelling.

    Get PDF
    The landscape of diagnostic testing for tuberculosis (TB) is changing rapidly, and stakeholders need urgent guidance on how to develop, deploy and optimize TB diagnostics in a way that maximizes impact and makes best use of available resources. When decisions must be made with only incomplete or preliminary data available, modelling is a useful tool for providing such guidance. Following a meeting of modelers and other key stakeholders organized by the TB Modelling and Analysis Consortium, we propose a conceptual framework for positioning models of TB diagnostics. We use that framework to describe modelling priorities in four key areas: Xpert(®) MTB/RIF scale-up, target product profiles for novel assays, drug susceptibility testing to support new drug regimens, and the improvement of future TB diagnostic models. If we are to maximize the impact and cost-effectiveness of TB diagnostics, these modelling priorities should figure prominently as targets for future research

    Improving the quality of modelling evidence used for tuberculosis policy evaluation.

    Get PDF
    Mathematical modelling is commonly used to evaluate policy options for tuberculosis (TB) control in high-burden countries. Although major policy and funding decisions are made based on these analyses, there is concern about the variability of results produced using modelled policy analyses. We discuss new guidance for country-level TB policy modelling. The guidance was developed by the TB Modelling and Analysis Consortium in collaboration with the World Health Organization Global TB Programme, with input from a range of TB stakeholders (funders, modelling groups, country TB programme staff and subject matter experts). The guidance describes principles for country-level TB modelling, as well as good practices for operationalising the principles. The principles cover technical concerns such as model design, parameterisation and validation, as well as approaches for incorporating modelling into country-led policy making and budgeting. For modellers, this guidance suggests approaches to improve the quality and relevance of modelling undertaken to support country-level planning. For non-modellers, this guidance describes considerations for engaging modelling technical assistance, contributing to a modelling exercise and reviewing the results of modelled analyses. If routinely adopted, this guidance should improve the reliability, transparency and usefulness of modelling for country-level TB policy making. However, this guidance will not address all challenges facing modelling, and ongoing work is needed to improve the empirical evidence base for TB policy evaluation and develop stronger mechanisms for validating models. Increasing country ownership of the modelling process remains a challenge, requiring sustained engagement and capacity building

    Quality changes and shelf-life prediction of a fresh fruit and vegetables purple smoothie

    Get PDF
    The sensory, microbial and bioactive quality changes of untreated (CTRL) and mild heat−treated (HT; 90 ºC/45 s) smoothies were studied and modelled throughout storage (5, 15 and 25 ºC). The overall acceptability was better preserved in HT samples being highly correlated (hierarchical clustering) with the flavour. The sensory quality data estimated smoothie shelf−life (CTRL/HT) of 18/55 (at 5 ºC), 4.5/12 (at 15 ºC), 2.4/5.8 (at 25 ºC) days. The yeast and moulds growth rate was lower in HT compared to CTRL while a lag phase for mesophiles/psychrophiles was observed in HT−5/15 ºC. HT and 5 ºC−storage stabilized the phenolics content. FRAP reported the best correlation (R2=0.94) with the studied bioactive compounds, followed by ABTS (R2=0.81) while DPPH was the total antioxidant capacity method with the lowest adjustment (R2=0.49). Conclusively, modelling was used to estimate the shelf−life of a smoothie based on quality retention after a short time−high temperature heat treatment that better preserved microbial and nutritional quality during storage.The financial support of this research was provided by the Ministerio Español de Economía y Competitividad MINECO (Projects AGL2013−48830−C2−1−R and AGL2013−48993−C2−1−R) and by FEDER funds. G.A. González−Tejedor thanks to Panamá Government for the scholarship to carry out his PhD Thesis. A. Garre (BES−2014−070946) is grateful to the MINECO for awarding him a pre−doctoral grant. We are also grateful to E. Esposito and N. Castillejo for their skilful technical assistance

    Two Origins for the Gene Encoding α-Isopropylmalate Synthase in Fungi

    Get PDF
    BACKGROUND: The biosynthesis of leucine is a biochemical pathway common to prokaryotes, plants and fungi, but absent from humans and animals. The pathway is a proposed target for antimicrobial therapy. METHODOLOGY/PRINCIPAL FINDINGS: Here we identified the leuA gene encoding alpha-isopropylmalate synthase in the zygomycete fungus Phycomyces blakesleeanus using a genetic mapping approach with crosses between wild type and leucine auxotrophic strains. To confirm the function of the gene, Phycomyces leuA was used to complement the auxotrophic phenotype exhibited by mutation of the leu3+ gene of the ascomycete fungus Schizosaccharomyces pombe. Phylogenetic analysis revealed that the leuA gene in Phycomyces, other zygomycetes, and the chytrids is more closely related to homologs in plants and photosynthetic bacteria than ascomycetes or basidiomycetes, and suggests that the Dikarya have acquired the gene more recently. CONCLUSIONS/SIGNIFICANCE: The identification of leuA in Phycomyces adds to the growing body of evidence that some primary metabolic pathways or parts of them have arisen multiple times during the evolution of fungi, probably through horizontal gene transfer events

    Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins

    Get PDF
    The cell envelope of mycobacteria, a group of Gram positive bacteria, is composed of a plasma membrane and a Gram-negative-like outer membrane containing mycolic acids. In addition, the surface of the mycobacteria is coated with an ill-characterized layer of extractable, non-covalently linked glycans, lipids and proteins, collectively known as the capsule, whose occurrence is a matter of debate. By using plunge freezing cryo-electron microscopy technique, we were able to show that pathogenic mycobacteria produce a thick capsule, only present when the cells were grown under unperturbed conditions and easily removed by mild detergents. This detergent-labile capsule layer contains arabinomannan, α-glucan and oligomannosyl-capped glycolipids. Further immunogenic and proteomic analyses revealed that Mycobacterium marinum capsule contains high amounts of proteins that are secreted via the ESX-1 pathway. Finally, cell infection experiments demonstrated the importance of the capsule for binding to cells and dampening of pro-inflammatory cytokine response. Together, these results show a direct visualization of the mycobacterial capsular layer as a labile structure that contains ESX-1-secreted proteins

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe

    1-Colchicin

    No full text

    Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models

    Get PDF
    BACKGROUND: The post-2015 End TB Strategy proposes targets of 50% reduction in tuberculosis incidence and 75% reduction in mortality from tuberculosis by 2025. We aimed to assess whether these targets are feasible in three high-burden countries with contrasting epidemiology and previous programmatic achievements. METHODS: 11 independently developed mathematical models of tuberculosis transmission projected the epidemiological impact of currently available tuberculosis interventions for prevention, diagnosis, and treatment in China, India, and South Africa. Models were calibrated with data on tuberculosis incidence and mortality in 2012. Representatives from national tuberculosis programmes and the advocacy community provided distinct country-specific intervention scenarios, which included screening for symptoms, active case finding, and preventive therapy. FINDINGS: Aggressive scale-up of any single intervention scenario could not achieve the post-2015 End TB Strategy targets in any country. However, the models projected that, in the South Africa national tuberculosis programme scenario, a combination of continuous isoniazid preventive therapy for individuals on antiretroviral therapy, expanded facility-based screening for symptoms of tuberculosis at health centres, and improved tuberculosis care could achieve a 55% reduction in incidence (range 31-62%) and a 72% reduction in mortality (range 64-82%) compared with 2015 levels. For India, and particularly for China, full scale-up of all interventions in tuberculosis-programme performance fell short of the 2025 targets, despite preventing a cumulative 3·4 million cases. The advocacy scenarios illustrated the high impact of detecting and treating latent tuberculosis. INTERPRETATION: Major reductions in tuberculosis burden seem possible with current interventions. However, additional interventions, adapted to country-specific tuberculosis epidemiology and health systems, are needed to reach the post-2015 End TB Strategy targets at country level. FUNDING: Bill and Melinda Gates Foundation
    corecore