2,045 research outputs found

    Closing the Knowing-Doing Gap in Invasive Plant Management: Accessibility and Interdisciplinarity of Scientific Research

    Get PDF
    Like many conservation disciplines, invasion biology may suffer from a knowing-doing gap, where scientific research fails to inform management actions. We surveyed California resource managers to evaluate engagement with scientific research and to identify research priorities. We examined managers\u27 access to information, judgment of the usefulness of existing research, ability to generate scientific information, and priorities for future research. We found that practitioners rely on their own experience, and largely do not read the peer-reviewed literature, which they regard as only moderately useful. Less than half of managers who do research carry out experiments conforming to the norms of hypothesis testing, and their results are not broadly disseminated. Managers\u27 research needs are not restricted to applied science, or even basic ecology, but include social science questions. Scientists studying invasions can make their research more useful by crossing disciplinary boundaries, sourcing research questions from practitioners, and reporting results in accessible venues

    Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression

    Get PDF
    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy

    Closed Loop Control Compact Exercise Device for Use on MPCV

    Get PDF
    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. To combat spaceflight physiological deconditioning, astronauts will use resistive and aerobic exercise regimens for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the mass and volume available for an exercise device in the next generation of spacecraft is limited. Therefore, compact exercise device prototypes are being developed for human in the loop evaluations. The NASA Human Research Program (HRP) is managing Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation for all exploration mission profiles from Multi-Purpose Crew Vehicle (MPCV) exploration missions (e.g., EM-2, up to 21 day) to Mars Transit (up to 1000 day) missions. Numerous technologies have been considered and evaluated against HRP-approved functional requirements and include flywheel, pneumatic and closed-loop microprocessor-controlled motor driven power plants. Motor driven technologies offer excellent torque density and load accuracy characteristics as well as the ability to create custom mechanical impedance (the dynamic relationship between force and velocity) and custom load versus position exercise algorithms. Further, closed-loop motor-driven technologies offer the ability to monitor exercise dose parameters and adapt to the needs of the crewmember for real time optimization of exercise prescriptions. A simple proportional-integral-derivative (PID) controller is demonstrated in a prototype motor driven exercise device with comparison to resistive static and dynamic load set points and aerobic work rate targets. The resistive load term in the algorithm includes a constant force component (Fcmg) as well as inertial component (Fima) and a discussion of system tuning is presented in terms of addressing key functional requirements and human interfaces. The device aerobic modality is modelled as a rowing exercise using ground data sets obtained from Concept 2 rowers as well as competitive rowing1. A discussion of software and electronic implementations are presented which demonstrate unique approaches to meeting the constrained mass, volume and power requirements of the MPCV. . In addition to utilizing traditional PID control, controllers utilizing state feedback with gains solved using a Linear Quadratic Regulator will be developed. Controllability and observability will be utilized to investigate the need for state measurement in the design. As the control system directly interacts with human test subjects, robust methods such as H-infinity are also being investigated.1. Kleshnev V. Biomechanics. In: Rowing, Handbook of Sports Medicine and Science. ed. by Secher N., Voliantis S. IOC Medical Commission, Blackwell Pub. pp. 22-34, 200

    Tubular CPT1A deletion minimally affects aging and chronic kidney injury

    Get PDF
    Kidney tubules use fatty acid oxidation (FAO) to support their high energetic requirements. Carnitine palmitoyltransferase 1A (CPT1A) is the rate-limiting enzyme for FAO, and it is necessary to transport long-chain fatty acids into mitochondria. To define the role of tubular CPT1A in aging and injury, we generated mice with tubule-specific deletion of Cpt1a (Cpt1aCKO mice), and the mice were either aged for 2 years or injured by aristolochic acid or unilateral ureteral obstruction. Surprisingly, Cpt1aCKO mice had no significant differences in kidney function or fibrosis compared with wild-type mice after aging or chronic injury. Primary tubule cells from aged Cpt1aCKO mice had a modest decrease in palmitate oxidation but retained the ability to metabolize long-chain fatty acids. Very-long-chain fatty acids, exclusively oxidized by peroxisomes, were reduced in kidneys lacking tubular CPT1A, consistent with increased peroxisomal activity. Single-nuclear RNA-Seq showed significantly increased expression of peroxisomal FAO enzymes in proximal tubules of mice lacking tubular CPT1A. These data suggest that peroxisomal FAO may compensate in the absence of CPT1A, and future genetic studies are needed to confirm the role of peroxisomal β-oxidation when mitochondrial FAO is impaired

    Novel Exercise Hardware Requirements, Development, and Selection Process for Long-Duration Space Flight

    Get PDF
    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat the physical toll that exploration space flight may take on the crew, NASAs Human Research Program is charged with developing exercise protocols and hardware to maintain astronaut health and fitness during long-term missions. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. As NASA aims toward space travel outside of low-earth orbit (LEO), the constraints placed upon exercise equipment onboard the vehicle increase. Proposed vehicle architectures for transit to and from locations outside of LEO call for limits to equipment volume, mass, and power consumption. While NASA has made great strides in providing for the physical welfare of the crew, the equipment currently used onboard ISS is too large, too massive, and too power hungry to consider for long-duration flight. The goal of the Advanced Exercise Concepts (AEC) project is to maintain the resistive and aerobic capabilities of the current, ISS suite of exercise equipment, while making reductions in size, mass, and power consumption in order to make the equipment suitable for long-duration missions

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    Plastic Traits of an Exotic Grass Contribute to Its Abundance but Are Not Always Favourable

    Get PDF
    In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C4 perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C∶N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C∶N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage the success of even plastic exotic species
    corecore