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Summary
Objective—Propensity scores for the analysis of observational data are typically estimated using
logistic regression. Our objective in this Review was to assess machine learning alternatives to
logistic regression which may accomplish the same goals but with fewer assumptions or greater
accuracy.

Study Design and Setting—We identified alternative methods for propensity score estimation
and/or classification from the public health, biostatistics, discrete mathematics, and computer
science literature, and evaluated these algorithms for applicability to the problem of propensity
score estimation, potential advantages over logistic regression, and ease of use.

Results—We identified four techniques as alternatives to logistic regression: neural networks,
support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting).

Conclusion—While the assumptions of logistic regression are well understood, those
assumptions are frequently ignored. All four alternatives have advantages and disadvantages
compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees
(particularly CART) appear to be most promising for use in the context of propensity score
analysis, but extensive simulation studies are needed to establish their utility in practice.
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Introduction
Propensity scores are the “conditional probability of assignment to a particular treatment
given a vector of observed covariates” [1]. Originally introduced in 1983 by Rosenbaum and
Rubin, use of propensity scores has increased dramatically in the past few years: a Medline
search for “propensity score” reveals that the number of citations has increased
exponentially during since the late 1990s, from around 8 per year from 1998–2000 to 215 in
2007.

The overall goal of a propensity score analysis is to control confounding bias in the
assessment of the average effect of a treatment or exposure (assumed in this discussion to be
dichotomous). A propensity score model helps achieve this goal by estimating the
probability of treatment given individual covariates such that conditioning on this
probability (the propensity score) ensures that the treatment is independent of covariate
patterns [2], and in particular by achieving balance on confounders by propensity score [3].
The key assumption made is that, given an exposed individual and an unexposed individual
with the same (or nearly the same) propensity score, treatment assignment for these two
individuals is independent of all confounding factors, and so the two observations can serve
as counterfactuals for the purpose of causal inference. Under the key assumption of no
unobserved or unmeasured confounding, matching exposed and unexposed individuals in a
cohort will allow the data analyst to obtain an unbiased estimate of the average causal effect
of the treatment on the outcome [1] while maintaining good precision compared to more
traditional maximum likelihood regression analysis [4]. Propensity scores can also be used
as continuous predictors in regression analysis, or to construct propensity categories
(typically by quintile or decile). In the latter case, averaging crude estimates by category will
usually eliminate the majority (about 90%) of confounding bias, assuming that the
distribution of covariates is balanced in the unexposed and exposed subjects [2]. Propensity
scores can only control for observed confounders; that is, the propensity score cannot be
counted upon to balance unobserved covariates [3]

Propensity scores themselves are, almost without exception in the published literature,
created using maximum likelihood logistic regression models [4,5], despite relatively early
suggestions of alternative approaches (e.g. Cook et al. [6]). A 2004 review of the literature
found that of 48 selected manuscripts, logistic regression was used to estimate propensity
scores in 47 of those manuscripts. The last used polytomous logistic regression [5].

Logistic regression is a useful technique for estimating propensity scores for several reasons,
to be discussed more fully below. However, logistic regression is only one of many methods
that might be used; for instance, D’Agostino [4] and Glynn [7] both raised the possibility of
calculating propensity scores using discriminant analysis, while McCaffrey et al. have
published work using generalized boosted models to create propensity scores [8]. Likewise,
Setoguchi et al. recently published a simulation study using neural networks and
classification trees to estimate propensity scores [9].

However, none of these investigations has reviewed the possible techniques that might be
used to estimate propensity scores. In the remainder of this review, therefore, we will briefly
note some of the advantages and disadvantages of logistic regression for propensity score
estimation, and review and discuss the relative advantages and disadvantages of several
representative methods from the machine learning literature that might be considered as
alternatives. These methods were identified by a domain expert (JL) with extensive
experience in the application of machine learning techniques in industry and from reference
to two key texts in machine learning [10,11]. Previous use and discussion of alternatives to
logistic regression in the propensity score literature were identified by a PubMed search
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using the terms “propensity score” and “propensity scores” and key words for the machine
learning techniques identified.

This paper is a pure review of statistical and medical literature, and as such IRB approval
was not necessary.

Logistic regression
The vast majority of published propensity score analyses use logistic regression to estimate
the scores. Logistic regression is attractive for probability prediction because (unlike log-
binomial regression, for example) it is mathematically constrained to produce probabilities
in the range [0,1] [12], and generally converges on parameter estimates relatively easily.
Further, logistic regression is a familiar and reasonably well-understood tool of researchers
in a variety of disciplines, and is easy to implement in most statistical packages (e.g., SAS,
STATA, R).

This familiarity may predispose investigators to using logistic regression even when better
alternatives may be available. For instance, proper modeling technique requires the
assessment of the linearity of risk with respect to the log-odds parametric transformation
(implicit in logistic regression) before logistic regression is used [12], yet there is little
evidence in the propensity score literature indicating that such assessments are routinely
made. For example, one review found that of 45 propensity score applications including
linear predictors of treatment and using logistic regression, only one reported an assessment
of the assumption of linearity in the logit [4]. The same review found that use of interaction
terms in propensity score models was infrequent at best [4]. These oversights may result in
poor model fit, and in turn to residual confounding in the propensity score analysis and a
biased effect estimate [4].

The relationship between model fit and bias is not as clear as this, in that inclusion of a
strong predictor of treatment in a propensity score model might improve model fit without
markedly affecting bias, if that predictor of treatment is a risk factor for the exposure but not
the outcome [13]. Moreover, some of these issues can be addressed within the context of
logistic regression: analysts can (and should) consider interaction terms for inclusion in their
models. Other problems are more persistent: including interactions terms (or for that matter,
splines or polynomials) as predictors of treatment does not guarantee that the assumption of
linearity in the logit is met for that term or any other.

Nonetheless, the typical way in which propensity scores are estimated appears to be naïve,
eschewing higher order terms and giving insufficient attention to key assumptions [5]. There
may be benefit, therefore, in considering approaches which in their most naïve
implementations are more flexible and make fewer assumptions than logistic regression:
approaches entirely outside the realm of regression modeling. Perhaps the simplest such
approach would be a simple, tabular analysis: for each covariate pattern we can calculate a
simple proportion of individuals with and without exposure. Tabular analysis makes few
assumptions, but is impeded by sparse data and (therefore) by continuous covariates. Non-
parametric techniques from discrete mathematics, computer science, and information theory
may be more generally applicable, and have been shown in many cases to be more efficient
at classifying highly dimensional data than the parametric regression techniques more
typically used to estimate propensity scores.

Algorithmic approaches to predicting propensity scores
In his 2001 paper Statistical Modeling: The Two Cultures, Leo Breiman points out that
many classification algorithms from the machine learning literature (what he terms the
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“Algorithmic Culture”) can outperform classical statistical techniques such as regression
(the “Data Culture”) [14], especially when dealing with high dimensional data – that is, data
with a large number of covariates. For instance, in logistic regression if the number of
covariates exceeds the number of data points we would be unable to construct a model that
incorporates valuable information from each covariate [14]. In contrast, many machine
learning algorithms such as neural networks perform well in precisely this situation [14].
This is of particular interest in a propensity score setting, as propensity scores themselves
are recommended for control of confounding in similar circumstances; for instance, Cepeda
et al. [2] report that propensity scores will outperform logistic regression in terms of
coverage probabilities when there are seven or fewer events per confounder.

The number of automated classification and learning algorithms available to generate
propensity scores or propensity categories is far in excess of what can be described here, but
a few notable examples can capture much of what is available. We will concentrate on
neural networks, linear classifiers (in particular, support vector machines), decision trees,
and meta-classifiers (specifically, boosting), each of which represents a different approach to
the classification problem [10]. While these techniques are often mathematically equivalent
(e.g., both decision trees and linear classifiers define a separating hyperplane), they differ in
learning algorithm, interpretation, and technical representation. The main drawback to all
these techniques is that, in contrast to logistic regression, the output of machine learning
classifiers sometimes lacks easy etiologic interpretation. However, as etiologic inference is
not key to propensity score estimation [4], and classifier outputs can still be used in the
ultimate etiologic model, we believe the “black box” nature of these techniques does not rule
them out as potentially useful tools for propensity score analysis. A summary of some key
advantages and disadvantages of these four machine learning techniques are available in
Table 1.

Neural networks
Inspired by the structure of the nervous system, neural networks (sometimes, artificial
neural networks) are highly opaque to the data analyst. A neural network comprises an input
layer, some number of “hidden” layers, and an output layer, each containing a number of
nodes connected to every node in the next layer by directed, weighted edges [10] (Figure 1).
While in theory a neural-network may consists of an arbitrary number of layers, in practice
only three layer (input layer, one hidden layer, output layer) and two layer (input layer and
output layer) networks are practical.

An example neural net is shown in Figure 1. Simply, a neural network takes input values
and transforms them according to weights on its directed edges, and outputs a value or set of
values, which may (among other possibilities) be a probability of class membership or a
sequence of “yes/no” decisions on class membership. Neural networks are “trained” to
classify items by examining a training data set with known outcomes, holding the output and
input values fixed, and re-weighting the internal edges appropriately. Unlike a fit logistic
regression model, the resulting, “trained” network edges have no causal interpretation,
representing a highly complex function of the input values.

Neural networks have at least two advantages over logistic regression. First, they are
designed to deal with high dimensional data, each value of which may have only a slight
effect on the probability of class membership, but which as a group can classify accurately
[15]. Second, a neural network of sufficient complexity (i.e., enough internal nodes, see
below) can approximate any smooth polynomial function, regardless of the order of the
polynomial or the number of interaction terms [16,17]. This frees the investigator from
having to a priori determine what interactions and functional forms are likely to exist, as
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they would with logistic regression. These factors, combined with the ability to generate
predicted probabilities and the fact that neural network implementations are already
available in many statistical computing packages including SAS [18] and R [19], though
apparently not Stata [20], make neural nets appear a good candidate for propensity score
generation.

The drawback of this approach is that the training of neural networks is still as much an art
as a science. There are no hard and fast rules for selecting the number of hidden nodes in a
network, avoiding local minima in the learning process, and avoiding overfitting. There is a
vast literature on the design and training of neural-networks for a variety of purposes (see
[21] for a review), but this literature is not accessible enough to the non-expert to make
neural-networks an “out of the box” technique. Optimizing a neural network for a particular
propensity score application and standardizing general procedures whereby neural networks
can be routinely used to estimate propensity scores are both likely to take substantial
investigation and effort.

Perhaps as a result of these unresolved issues and complexities, while neural networks have
been mentioned as a possible means of generating propensity scores by several authors
[7,22], have been shown to be effective classifiers in general [14] and in comparison to
logistic regression [23,24], we have been able to find only a single example of their use in
the context of propensity scores in the medical literature [9]. This example, by Setoguchi et
al., found in a series of simulations that neural network approaches to propensity score
estimation provided less bias than comparable logistic regression approaches especially in
the presence of non-linearity [9], suggesting that neural network approaches may have good
potential in this context.

Linear classifiers (support vector machines)
Linear classifiers make classification decisions based on a linear combination of the features
(i.e., covariates) of the data points [10]. For example, in the two-class case, the decision rule
learned by a linear classifier can be considered to be a dividing hyperplane in the feature
space, separating those data points into two classes (Figure 2). Logistic regression itself,
used to make classification decisions, is a kind of dichotomous linear classifier; however,
the class of machine-learning linear classifiers is perhaps best exemplified by support vector
machines (SVMs) [25].

SVMs and logistic regression are similar in that both calculate a set of coefficients (or
weights) for variables based on a transformation of the feature (covariate) space [10]. The
major difference between SVMs and logistic regression is that while logistic regression
attempts to explicitly model the probability (via the odds) of outcomes, SVMs attempt to
directly find the best dividing hyperplane (or hyperplanes, in the case of more than two
classes) regardless of the actual probability of class membership [26]. Thus, an SVM could
be used to directly construct propensity categories. Innovative new techniques in SVMs,
such as import vector machines (IVMs), do calculate an explicit probability of class
membership, and hence have great promise for the calculation of propensity scores if they
are proven to have performance equivalent to that of more standard SVM methods [26].

There are several advantages of SVM compared to logistic regression. While in logistic
regression the data analyst must explicitly choose to increase the dimensionality of the
feature space through the addition of interaction or polynomial terms among predictors, such
transformations are standard practice in SVM approaches to classification [14]. In addition,
SVMs deal well with high-dimensional data, and they do not assume a parametric
relationship between the model predictors and outcome. The main disadvantage of SVMs
for generation of propensity scores is that in general, the actual propensity scores themselves
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may remain unknown, with the SVM only determining group membership. As noted above,
IVMs solve this problem, but IVM (and SVM) software is not widely available: while an
implementation of SVMs is available in R [27], the procedure remains experimental in SAS
[18], and we have been unable to identify an implementation of the software in Stata [20]
(Table 1). The use of multiple linear classifiers to subdivide strata or create actual
probabilities of class membership can also overcome this problem (see Boosting, below). A
last disadvantage of SVM approaches is the need to select the function used to transform the
covariates, called the kernel function. Selecting the appropriate kernel function for a
particular classification task is non-trivial; in general several alternatives are considered and
compared via cross validation or another method [28]. Due to the need to select the kernel
function, the naïve implementation of an SVM or IVM may not evidence substantial
advantages over logistic regression.

SVMs have proven effective in practical classification tasks such a spam detection [29] and
the classification of cancers [30,31], but we are aware of only one instance in which an
SVM has been used to estimate propensity scores [32].

Decision trees
Decision trees are classification algorithms which specify a “tree” of cut points that
minimize some measure of diversity in the final nodes once the tree is complete. The final
nodes then represent relatively homogenous individual classes [10] (Figure 3). To the extent
that all data points classified at a given end node have a similar probability of class
membership (that is, probability of treatment), then the output of decision trees can be used
to directly construct propensity categories [6].

Decision trees are well researched, and relatively easy both to interpret and to implement;
decision tree software is available for standard software packages [18,33,34] (Table 1). Like
SVMs and neural networks, many methods for decision trees (e.g., ID3, C4.5) do not
provide a probability of class membership although some variants, in particular
classification and regression trees (CART), do provide such probabilities. However,
performance of all decision trees is dependent on both their method of construction and the
amount of pruning (removal of highly specific nodes) performed.

There are several examples of decision tree analysis in the medical literature, almost
invariably in the form of a particular kind of decision tree algorithm, Classification and
Regression Trees (CART) [35]. For instance, one recent study used CART along with
logistic regression to implement a prediction model for individuals at high risk of incident
STDs during pregnancy [36] while another used CART directly for propensity score
calculation [37]; in contrast to some other kinds of decision trees, CART can provide
explicit probabilities. Setoguchi also used classification trees to estimate propensity scores,
generally finding that such propensity scores yielded effect estimates that were less biased
than those derived using main effects logistic regression [9]. Setoguchi et al. also found that
pruning their classification trees resulted in markedly higher bias in many scenarios, though
they caution that alternative approaches to pruning might prove more successful [9].

Boosting (meta-classifiers)
Training a single classifier for high performance may be difficult and require extensive
expertise in tuning the algorithms involved. In addition, as mentioned above, many
classification algorithms do not model a probability, hence are limited in their utility for
propensity score analysis. Meta-classification algorithms – and in particular, boosting
algorithms – solve both of these problems. Boosting combines the results of many weak
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classifiers – that is, classifiers with performance only slightly better then chance – to form a
single strong classifier [10].

Boosting boasts several advantages. Because the component classifiers need only perform at
a level only slightly better than chance alone, less expertise with the particular classification
algorithm being used may be required. The underlying classifier used in boosting may be
selected at the discretion of the researcher, but in general simple and computationally
efficient classifiers such as decision trees are preferable because high accuracy is not
required of the underlying classifier. Boosting is also less susceptible to overfitting than
single classifier techniques. Especially relevant to the generation of propensity scores is the
fact that many boosting algorithms can be used to construct a classifier that produces a
probability of class membership using component classifiers that do not produce such a
probability (e.g., decision trees, SVMs) [38]. Last, implementations of boosting are available
for R [39,40], SAS [18], and Stata [41] (Table 1). A drawback of boosting (and, again, of
many meta-classification algorithms) is that boosting does not provide interpretable
coefficients, even if the underlying classification algorithm alone produces such results.

Both McCaffrey et al. and Harder et al. have used generalized boosted models (a decision
tree-based boosting technique that provides probabilities) to successfully generate
propensity scores [8,42]. Breiman’s “random forests” algorithm is a decision tree based
meta-classification algorithm similar to boosting that may also be a good choice for
propensity score generation [39].

Discussion
Propensity scores provide a powerful tool for controlling confounding in observational
studies; however, their power may be limited by the exclusive and near-automatic use of
logistic regression for estimation of propensity scores. We have reviewed several techniques
that have potential to perform better than logistic regression in helping to control
confounding in a propensity score setting. In particular, we believe that boosting methods
have the best potential for estimation of propensity scores because of the power and
flexibility of their naïve implementations. CART has similar promise, but the need for
pruning in decision tree algorithms makes CART less attractive. Neural networks and
support vector machines also show less potential because of the expertise involved in tuning
the learning algorithm.

It is worth noting that propensity scores (estimated probability of exposure given covariates)
form an important component of several other recent innovations in causal modeling. For
instance, inverse probability of treatment weighting [43] begins with the calculation of a
propensity score, which is then transformed and stabilized to create weights. Inverse
probability weighted marginal structural models [43,44] and some doubly robust models
[45,46] similarly use propensity scores for re-weighting observations to eliminate
confounding and selection bias in observational settings. Those methods presented here that
do not provide an actual probability of class membership are obviously not appropriate for
estimators that require re-weighting; however a number of the techniques we have presented
may still prove useful in developing new ways of approaching weighted models.

Some of the problems we have identified with logistic regression (or parametric regression)
can be overcome with conscientious implementation of those statistical models. For
example, published examples of regression models for calculation of propensity scores
typically do not report use of interaction terms [5], splines, or higher order polynomials.
Failing to include these terms in a model is equivalent to assuming that they collectively
contribute nothing to model fit, a strong assumption and one which is (likely) frequently
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inadvisable. Inclusion of these terms and closer attention to the parametric assumptions of
logistic regression might lead to sufficient improvement in the usual approach to propensity
score estimation that it would make the potential gains in control of confounding using less-
familiar “algorithmic” approaches presented here too small to be worth pursuing.

In practice, however, the widespread use of naïve logistic regression for estimation of
propensity scores suggests (to us, at least) that there is resistance against the inclusion of
such higher order terms in regression models. Additionally, the consideration of these terms
introduces additional questions (with splines, for example: how many knots, and where
should those knots be placed?). Logistic regression always makes a parametric assumption
of the log-odds transformation, whether the predictors in that model are simple or higher
order. We would argue that given the evident preference for naïve applications of logistic
regression [4], the optimal tool for the estimation of propensity scores is one which performs
very well in its naïve implementations, rather than in its most sophisticated. Machine
learning techniques make fewer assumptions than logistic regression, and often deal
implicitly with interactions and non-linearities, in their naïve implementations. We believe
that one of these techniques might find recommendation to replace logistic regression as the
presumptive mechanism for estimation of propensity scores, although extensive simulation
research is required to verify this intuition.

However, the techniques we have reviewed have the potential to eliminate confounding to a
greater degree than logistic or other parametric regression in a wide variety of settings.
While the work of Setoguchi et al. [9] and work in preparation by Lee et al. [47] begins this
work, further simulation studies are needed to compare performance of these different
techniques in different settings, and with data structures with a wide range of strengths of
exposure-outcome, covariate-exposure, and covariate-outcome relationships, covariance
structures among all covariates, and parametric (and non-parametric) relationships among
exposure and covariates. In particular, while Setoguchi et al. emphasized that their results
were meant to be representative of pharmacoepidemiologic studies, future simulations
should explore a wider range of epidemiologic applications. Fortunately implementations of
many of the algorithms described are available on a variety of statistical and mathematical
computing platforms, so as performance of these algorithms is validated against logistic
regression in simulation, they can be relatively easily adopted by practicing epidemiologists
and data analysts. In addition to the initial findings that both neural networks and CART
(recursive partitioning) may be useful in estimating propensity scores [9], we believe that
the other techniques discussed here, and in particular boosting, should be the focus of future
simulation studies. Generalized boosting models, in particular, work well out of the box, are
available in three widely used statistical computing platforms (SAS, Stata, and R, see Table
1), and are resistant to overfitting. Preliminary results from Lee et al. [47] support this
recommendation of boosting.

As mentioned earlier, the “black box” nature of these techniques may make some scientists
and data analysts uncomfortable, even while they have proven effective in practical
applications [14]. Additionally, as with any algorithm that can be used easily used “out of
the box”, there is always the danger with these techniques of making fundamental
assumptions that do not hold. Hence, it is important that researchers familiarize themselves
with the assumptions being made by the particular approach that they choose.

Further reading
There is a wide variety of literature on machine learning for specific applications and
general use. Pattern Classification by Duda, Hart, and Stork [10] and Machine Learning by

Westreich et al. Page 8

J Clin Epidemiol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mitchell [11] both serve as excellent introductions and reference material for those
interested in the technical details behind the techniques we have presented here.

Dreiseitl and Ohno-Machado also provide an accessible overview of classification
techniques in their discussion of the use of logistic regression and neural networks in the
medical literature [48].

WHAT IS NEW?

Propensity scores are, almost without exception, estimated using logistic regression, but
there are a number of statistical and classification techniques that may do better than
logistic regression. We encourage researchers to explore the use of these other
techniques, in particular boosting techniques and decision trees (CART), in subsequent
simulation studies and data analysis where propensity scores are appropriate.
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Figure 1.
The basic form of a three layer neural network used to predict the probability of receiving
statins based on possible confounders of the relationship between use of statins and all-cause
mortality.
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Figure 2.
A simple linear classifier. Those points above the dotted line (the dividing hyper-plane) are
classified as having regular screening, while those below the line are classified as not having
regular screening.
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Figure 3.
A simple decision tree predicting smallpox vaccine status among military personnel.
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