412 research outputs found

    Interaction between Polo and BicD proteins links oocyte determination and meiosis control in Drosophila.: oocyte fate and meiosis control

    Get PDF
    Meiosis is a specialized cell cycle limited to the gametes in Metazoa. In Drosophila, oocyte determination and meiosis control are interdependent processes, and BicD appears to play a key role in both. However, the exact mechanism of how BicD-dependent polarized transport could influence meiosis and vice versa remains an open question. In this article, we report that the cell cycle regulatory kinase Polo binds to BicD protein during oogenesis. Polo is expressed in all cells during cyst formation before specifically localizing to the oocyte. This is the earliest known example of asymmetric localization of a cell-cycle regulator in this process. This localization is dependent on BicD and the Dynein complex. Loss- and gain-of-function experiments showed that Polo has two independent functions. On the one hand, it acts as a trigger for meiosis. On the other hand, it is independently required, in a cell-autonomous manner, for the activation of BicD-dependent transport. Moreover, we show that Polo overexpression can rescue a hypomorphic mutation of BicD by restoring its localization and its function, suggesting that the requirement for Polo in polarized transport acts through regulation of BicD. Taken together, our data indicate the existence of a positive feedback loop between BicD and Polo, and we propose that this loop represents a functional link between oocyte specification and the control of meiosis

    Selective alteration of gene expression in response to natural and synthetic retinoids.

    Get PDF
    BACKGROUND: Retinoids are very potent inducers of cellular differentiation and apoptosis, and are efficient anti-tumoral agents. Synthetic retinoids are designed to restrict their toxicity and side effects, mostly by increasing their selectivity toward each isotype of retinoic acids receptors (RARα,β, γ and RXRα, β, γ). We however previously showed that retinoids displayed very different abilities to activate retinoid-inducible reporter genes, and that these differential properties were correlated to the ability of a given ligand to promote SRC-1 recruitment by DNA-bound RXR:RAR heterodimers. This suggested that gene-selective modulation could be achieved by structurally distinct retinoids. RESULTS: Using the differential display mRNA technique, we identified several genes on the basis of their differential induction by natural or synthetic retinoids in human cervix adenocarcinoma cells. Furthermore, this differential ability to regulate promoter activities was also observed in murine P19 cells for the RARβ2 and CRABPII gene, showing conclusively that retinoid structure has a dramatic impact on the regulation of endogenous genes. CONCLUSIONS: Our findings therefore show that some degree of selective induction or repression of gene expression may be achieved when using appropriately designed ligands for retinoic acid receptors, extending the concept of selective modulators from estrogen and peroxisome proliferator activated receptors to the class of retinoid receptors

    Alpha-catenin-Dependent Recruitment of the Centrosomal Protein CAP350 to Adherens Junctions Allows Epithelial Cells to Acquire a Columnar Shape

    Get PDF
    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis.This work was supported by Ministerio de Economia y Competitividad, Spain (BFU2012-36717 and CSD2009-00016 to RMR and BFU2011-22916 to JRM) and by Junta de Andalucia (CVI-7256 and CTS-2071), and by a funding GenHomme Network 02490-6088 to Hybrigenics and the Institut Curie. MA and AZ were supported by MEC–FPI Grants.Peer Reviewe

    Transient TNF regulates the self-renewing capacity of stem-like label-retaining cells in sphere and skin equivalent models of melanoma.

    Get PDF
    International audience: BackgroundIt is well established that inflammation promotes cancer, including melanoma, although the exact mechanisms involved are less known. In this study, we tested the hypothesis that inflammatory factors affect the cancer stem cell (CSC) compartment responsible for tumor development and relapse.ResultsUsing an inducible histone 2B-GFP fusion protein as a tracer of cell divisional history, we determined that tumor necrosis factor (TNF), which is a classical pro-inflammatory cytokine, enlarged the CSC pool of GFP-positive label-retaining cells (LRCs) in tumor-like melanospheres. Although these cells acquired melanoma stem cell markers, including ABCB5 and CD271, and self-renewal ability, they lost their capacity to differentiate, as evidenced by the diminished MelanA expression in melanosphere cells and the loss of pigmentation in a skin equivalent model of human melanoma. The undifferentiated cell phenotype could be reversed by LY294002, which is an inhibitor of the PI3K/AKT signaling pathway, and this reversal was accompanied by a significant reduction in CSC phenotypic markers and functional properties. Importantly, the changes induced by a transient exposure to TNF were long-lasting and observed for many generations after TNF withdrawal.ConclusionsWe conclude that pro-inflammatory TNF targets the quiescent/slow-cycling melanoma SC compartment and promotes PI3K/AKT-driven expansion of melanoma SCs most likely by preventing their asymmetrical self-renewal. This TNF effect is maintained and transferred to descendants of LRC CSCs and is manifested in the absence of TNF, suggesting that a transient exposure to inflammatory factors imprints long-lasting molecular and/or cellular changes with functional consequences long after inflammatory signal suppression. Clinically, these results may translate into an inflammation-triggered accumulation of quiescent/slow-cycling CSCs and a post-inflammatory onset of an aggressive tumor

    Human annexin A6 interacts with influenza a virus protein M2 and negatively modulates infection

    Get PDF
    Copyright © 2012, American Society for Microbiology. All Rights ReservedThe influenza A virus M2 ion channel protein has the longest cytoplasmic tail (CT) among the three viral envelope proteins and is well conserved between different viral strains. It is accessible to the host cellular machinery after fusion with the endosomal membrane and during the trafficking, assembly, and budding processes. We hypothesized that identification of host cellular interactants of M2 CT could help us to better understand the molecular mechanisms regulating the M2-dependent stages of the virus life cycle. Using yeast two-hybrid screening with M2 CT as bait, a novel interaction with the human annexin A6 (AnxA6) protein was identified, and their physical interaction was confirmed by coimmunoprecipitation assay and a colocalization study of virus-infected human cells. We found that small interfering RNA (siRNA)-mediated knockdown of AnxA6 expression significantly increased virus production, while its overexpression could reduce the titer of virus progeny, suggesting a negative regulatory role for AnxA6 during influenza A virus infection. Further characterization revealed that AnxA6 depletion or overexpression had no effect on the early stages of the virus life cycle or on viral RNA replication but impaired the release of progeny virus, as suggested by delayed or defective budding events observed at the plasma membrane of virus-infected cells by transmission electron microscopy. Collectively, this work identifies AnxA6 as a novel cellular regulator that targets and impairs the virus budding and release stages of the influenza A virus life cycle.This work was supported by the Research Fund for the Control of Infectious Disease (project 09080892) of the Hong Kong Government, the Area of Excellence Scheme of the University Grants Committee (grant AoE/M-12/-06 of the Hong Kong Special Administrative Region, China), the French Ministry of Health, the RESPARI Pasteur Network

    PAIR: the predicted Arabidopsis interactome resource

    Get PDF
    The predicted Arabidopsis interactome resource (PAIR, http://www.cls.zju.edu.cn/pair/), comprised of 5990 experimentally reported molecular interactions in Arabidopsis thaliana together with 145 494 predicted interactions, is currently the most comprehensive data set of the Arabidopsis interactome with high reliability. PAIR predicts interactions by a fine-tuned support vector machine model that integrates indirect evidences for interaction, such as gene co-expressions, domain interactions, shared GO annotations, co-localizations, phylogenetic profile similarities and homologous interactions in other organisms (interologs). These predictions were expected to cover 24% of the entire Arabidopsis interactome, and their reliability was estimated to be 44%. Two independent example data sets were used to rigorously validate the prediction accuracy. PAIR features a user-friendly query interface, providing rich annotation on the relationships between two proteins. A graphical interaction network browser has also been integrated into the PAIR web interface to facilitate mining of specific pathways

    A New Mint1 Isoform, but Not the Conventional Mint1, Interacts with the Small GTPase Rab6

    Full text link
    Small GTPases of the Rab family are important regulators of a large variety of different cellular functions such as membrane organization and vesicle trafficking. They have been shown to play a role in several human diseases. One prominent member, Rab6, is thought to be involved in the development of Alzheimer’s Disease, the most prevalent mental disorder worldwide. Previous studies have shown that Rab6 impairs the processing of the amyloid precursor protein (APP), which is cleaved to β-amyloid in brains of patients suffering from Alzheimer’s Disease. Additionally, all three members of the Mint adaptor family are implied to participate in the amyloidogenic pathway. Here, we report the identification of a new Mint1 isoform in a yeast two-hybrid screening, Mint1 826, which lacks an eleven amino acid (aa) sequence in the conserved C-terminal region. Mint1 826, but not the conventional Mint1, interacts with Rab6 via the PTB domain. This interaction is nucleotide-dependent, Rab6-specific and influences the subcellular localization of Mint1 826. We were able to detect and sequence a corresponding proteolytic peptide derived from cellular Mint1 826 by mass spectrometry proving the absence of aa 495–505 and could show that the deletion does not influence the ability of this adaptor protein to interact with APP. Taking into account that APP interacts and co-localizes with Mint1 826 and is transported in Rab6 positive vesicles, our data suggest that Mint1 826 bridges APP to the small GTPase at distinct cellular sorting points, establishing Mint1 826 as an important player in regulation of APP trafficking and processing

    Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage

    Get PDF
    © 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes

    DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila

    Get PDF
    DroID (http://droidb.org/), the Drosophila Interactions Database, is a comprehensive public resource for Drosophila gene and protein interactions. DroID contains genetic interactions and experimentally detected protein–protein interactions curated from the literature and from external databases, and predicted protein interactions based on experiments in other species. Protein interactions are annotated with experimental details and periodically updated confidence scores. Data in DroID is accessible through user-friendly, intuitive interfaces that allow simple or advanced searches and graphical visualization of interaction networks. DroID has been expanded to include interaction types that enable more complete analyses of the genetic networks that underlie biological processes. In addition to protein–protein and genetic interactions, the database now includes transcription factor–gene and regulatory RNA–gene interactions. In addition, DroID now has more gene expression data that can be used to search and filter interaction networks. Orthologous gene mappings of Drosophila genes to other organisms are also available to facilitate finding interactions based on gene names and identifiers for a number of common model organisms and humans. Improvements have been made to the web and graphical interfaces to help biologists gain a comprehensive view of the interaction networks relevant to the genes and systems that they study

    Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton.

    Get PDF
    Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function
    corecore